Tag Archives: motor parts

China Best Sales Mechanical Power Transmission Drive Parts Components Connection Pump Rubber Coupler Manufacturer Motor Shaft Universal Coupling

Product Description

Stainless Steel Gear Roller Chain Mechanical Power Transmission Drive Parts Components Connection Tyre Grid Jaw Spider Fan Pump Rubber Coupler Manufacturer Round Motor Shaft Price Universal Joint Coupling

Features

 

1. Compact designing, easy installation.
2. Convenient maintenance, small size, and lightweight.
3. Absorb the transmission of impact load.
4. Prevent overload.

We can provide the following couplings:

Rigid coupling Flange coupling Oldham coupling
Chain Coupling HRC Coupling Jaw Coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Spacer Coupling Nm Coupling MH Coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Product Description

SIZE N.m r/min
 
D D1 d1 L C n-M kg
FCL90 4 4000 90 35.5 11 28 3 4-M8 1.7
FCL100 10 4000 100 40 11 35.5 3 4-M10 2.3
FCL112 16 4000 112 45 13 40 3 4-M10 2.8
FCL125 25 4000 125 65 50 13 45 3 4-M12 4
FCL140 50 4000 140 71 63 13 50 3 6-M12 5.4
FCL160 110 4000 160 80 15 56 3 8-M12 8
FCL180 157 3500 180 90 15 63 3 8-M12 10.5
FCL200 245 3200 200 100 21 71 4 8-M20 16.2
FCL224 392 2850 224 112 21 80 4 8-M20 21.3
FCL250 618 2550 250 125 25 90 4 8-M24 31.6
FCL280 980 2300 280 140 34 100 4 8-M24 44
FCL315 1568 2050 315 160 41 112 4 10-M24 57.7
FCL355 2450 1800 355 180 60 125 5 8-M30 89.5
FCL400 3920 1600 400 200 60 125 5 10-M30 113
FCL450 6174 1400 450 224 65 140 5 12-M30 145
FCL560 9800 1150 560 250 85 160 5 14-M30 229
FCL630 15680 1000 630 280 95 180 5 18-M30 296

 

Related Products

 

 

Company Profile

FAQ

Q: How to ship the coupling to us?
A: It is available by air, sea, or train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

fluid coupling

Fluid Couplings in Marine Propulsion Systems

Yes, fluid couplings can be and are commonly used in marine propulsion systems. They offer several advantages that make them well-suited for such applications:

  • Smooth Power Transmission: Fluid couplings provide smooth power transmission, which is beneficial for marine propulsion where abrupt changes in power delivery can be detrimental to the vessel’s stability and performance.
  • Torque Limiting: In marine applications, fluid couplings can act as torque limiters, protecting the propulsion system and engine from sudden torque surges and overloads, which can occur during maneuvers or when encountering resistance in water.
  • Impact Damping: The hydrodynamic principle of fluid couplings helps dampen impacts and shocks in the propulsion system, reducing wear and tear on the components and extending their lifespan.
  • Load Sharing: In multi-engine marine setups, fluid couplings facilitate load sharing between engines, ensuring each engine contributes its share of power to achieve optimal propulsion efficiency.
  • Start-up Performance: Fluid couplings enable controlled and gradual acceleration during start-up, which is crucial for large vessels and applications where sudden torque spikes could damage the drivetrain or disturb the vessel’s balance.
  • Overload Protection: The fluid coupling’s ability to slip at high loads provides inherent overload protection to the marine propulsion system, safeguarding it against potential damage.

Fluid couplings used in marine applications are specially designed to withstand the harsh conditions of the marine environment, including exposure to saltwater, humidity, and vibration. They are available in various sizes and configurations to accommodate different marine vessel types and power requirements.

Overall, fluid couplings offer reliable and efficient power transmission solutions for marine propulsion systems, contributing to the safe and smooth operation of the vessel.

fluid coupling

Role of Fluid Coupling in Torque Multiplication and Power Transfer

A fluid coupling is a mechanical device used to transmit power between two shafts without direct physical contact. It operates on the principles of fluid dynamics and hydrokinetics to enable torque multiplication and efficient power transfer. Here’s how a fluid coupling achieves these functions:

  • Hydrodynamic Torque Converter: A fluid coupling is essentially a hydrodynamic torque converter. When the input shaft (driving shaft) rotates, it sets the transmission fluid inside the coupling in motion. The fluid experiences centrifugal forces, creating a high-velocity zone near the outer circumference and a low-velocity zone near the center. This velocity difference generates torque in the fluid coupling, allowing power to be transmitted from the input shaft to the output shaft (driven shaft).
  • Torque Multiplication: One of the primary advantages of a fluid coupling is its ability to provide torque multiplication. During startup or when the load on the driven shaft is initially low, the fluid coupling slips to some extent, which allows the input shaft to rotate at a higher speed than the output shaft. This speed difference results in torque multiplication, enabling the fluid coupling to handle higher loads during acceleration or heavy starting conditions.
  • Power Transfer Efficiency: Fluid couplings offer high power transfer efficiency due to the hydrodynamic nature of their operation. The smooth and continuous transmission of power through the fluid medium minimizes energy losses and mechanical wear, leading to more efficient power transmission compared to mechanical clutches or direct-coupling methods.
  • Load Adaptability: Fluid couplings automatically adjust their slip to adapt to changing load conditions. When the load on the output shaft increases, the fluid coupling slips more, allowing the output shaft to slow down slightly and match the load demand. This load adaptability ensures smooth and stable power transfer even under varying operating conditions.

Fluid couplings are commonly used in applications where torque multiplication and smooth power transfer are essential. They find widespread use in heavy machinery, mining equipment, conveyors, crushers, marine propulsion systems, and many other industrial applications. By efficiently transferring power while providing torque multiplication, fluid couplings help optimize the performance and longevity of power transmission systems.

Proper selection of the fluid coupling based on the application’s torque and power requirements is crucial to ensure optimal torque multiplication and power transfer. Additionally, regular maintenance and monitoring of the fluid coupling’s condition are essential to maintain its efficiency and reliability over time.

fluid coupling

Principle of Hydrodynamic Fluid Coupling

A hydrodynamic fluid coupling operates on the principle of hydrokinetics, utilizing hydraulic fluid to transmit power between an engine or prime mover and a driven load. The key components of a fluid coupling are the impeller, the turbine, and the housing filled with hydraulic fluid.

Here’s how the principle works:

  1. Impeller: The impeller is connected to the engine’s crankshaft and is responsible for driving the hydraulic fluid. As the impeller rotates, it creates a flow of fluid within the housing.
  2. Fluid Flow: The rotational motion of the impeller causes the fluid to move radially outward, towards the housing walls. This generates a high-velocity fluid flow in the housing.
  3. Turbine: The turbine is connected to the driven load, such as a transmission or machinery input shaft. As the fluid flows onto the blades of the turbine, it causes the turbine to rotate.
  4. Power Transmission: The kinetic energy of the high-velocity fluid is transferred to the turbine, resulting in the rotation of the driven load. The power transmission is achieved purely through the hydrodynamic effect of the fluid flow.
  5. Slip: In a fluid coupling, there is always a slight difference in speed (slip) between the impeller and the turbine. This slip is necessary to allow the fluid to accelerate from rest to the speed of the turbine. As a result, the output speed of the driven load is always slightly less than the input speed from the engine.

Hydrodynamic fluid couplings provide several advantages, such as smooth power transmission, overload protection, and torsional vibration dampening. However, they do not provide torque multiplication like torque converters do, making them more suitable for applications where precise speed matching is required.

China Best Sales Mechanical Power Transmission Drive Parts Components Connection Pump Rubber Coupler Manufacturer Motor Shaft Universal Coupling  China Best Sales Mechanical Power Transmission Drive Parts Components Connection Pump Rubber Coupler Manufacturer Motor Shaft Universal Coupling
editor by CX 2023-10-23

China best Flexible Coupling Flange Industrial Shaft Rubber Motor Disc Drive Stainless Steel Couplings Best Transmission Parts High Quality Good Price Flexible Coupling

Product Description

Flexible Coupling Flange Industrial Shaft Rubber Motor Disc Drive Stainless Steel Couplings Best Transmission Parts High Quality Good Price Flexible Coupling

Application of Flexible Coupling

Flexible couplings are used to transmit torque from 1 shaft to another while allowing for some misalignment between the shafts. This makes them ideal for applications where the shafts are not perfectly aligned, such as when the equipment is installed in a new location or when the equipment is subject to vibration.

Flexible couplings are available in a variety of types, each with its own advantages and disadvantages. Some of the most common types of flexible couplings include:

  • Jaw couplings: Jaw couplings are made of 2 or more jaws that are clamped together around the shafts. The jaws allow the shafts to move slightly relative to each other, which helps to compensate for misalignment. Jaw couplings are relatively inexpensive and easy to install.
  • Hitchcock couplings: Hitchcock couplings are made of a series of discs that are connected by springs. The discs allow the shafts to move slightly relative to each other, which helps to compensate for misalignment. Hitchcock couplings are more expensive than jaw couplings, but they are also more durable.
  • Spider couplings: Spider couplings are made of a series of spiders that are connected by springs. The spiders allow the shafts to move slightly relative to each other, which helps to compensate for misalignment. Spider couplings are more expensive than jaw couplings and Hitchcock couplings, but they are also more durable and can withstand higher torques.

The best type of flexible coupling for a particular application will depend on the specific requirements of that application. Factors to consider include the amount of misalignment that needs to be compensated for, the torque that needs to be transmitted, and the cost.

Here are some of the applications of flexible couplings:

  • Machine tools: Flexible couplings are used in machine tools to transmit power from the motor to the machine. This allows the machine to operate even if the motor and machine shafts are not perfectly aligned.
  • Conveyors: Flexible couplings are used in conveyors to transmit power from the motor to the conveyor belt. This allows the conveyor to operate even if the motor and conveyor belt shafts are not perfectly aligned.
  • Pumps: Flexible couplings are used in pumps to transmit power from the motor to the pump shaft. This allows the pump to operate even if the motor and pump shafts are not perfectly aligned.
  • Fans: Flexible couplings are used in fans to transmit power from the motor to the fan shaft. This allows the fan to operate even if the motor and fan shafts are not perfectly aligned.
  • Compressors: Flexible couplings are used in compressors to transmit power from the motor to the compressor shaft. This allows the compressor to operate even if the motor and compressor shafts are not perfectly aligned.

Overall, flexible couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, but they also have some disadvantages. The best type of coupling for a particular application will depend on the specific requirements of that application.

elastomeric coupling

Contribution of Elastomeric Couplings to Mechanical System Efficiency

Elastomeric couplings play a significant role in enhancing the overall efficiency of mechanical systems in various ways:

1. Power Transmission Efficiency:

Elastomeric couplings efficiently transmit torque from one shaft to another, minimizing energy losses during power transmission. Their flexibility allows them to maintain continuous contact with the shafts, reducing backlash and ensuring efficient torque transfer.

2. Misalignment Compensation:

Shaft misalignments can occur due to various factors like thermal expansion, manufacturing tolerances, or structural shifts. Elastomeric couplings can accommodate angular, parallel, and axial misalignments, ensuring that the system remains properly aligned during operation. This reduces stress on connected components, conserving energy and extending the lifespan of the machinery.

3. Vibration Damping:

Elastomeric materials have excellent damping properties that help reduce vibrations and oscillations in rotating machinery. By absorbing and dissipating vibrational energy, these couplings decrease the impact of vibrations on the system, improving overall efficiency and reducing wear on components.

4. Shock Load Absorption:

During sudden torque spikes or load changes, elastomeric couplings act as shock absorbers, cushioning the impact and preventing the propagation of shock loads to connected equipment. This protects the machinery from damage and enhances its overall efficiency and reliability.

5. Noise Reduction:

Elastomeric couplings’ ability to dampen vibrations also contributes to noise reduction in mechanical systems. Reduced vibration levels lead to quieter operation, making elastomeric couplings beneficial in noise-sensitive environments.

6. Cost-Effectiveness:

Elastomeric couplings are generally cost-effective compared to some other coupling types, providing efficient power transmission at a lower cost. Their ease of installation and maintenance further add to their cost-effectiveness.

7. Protection Against Overloads:

In case of overloads or sudden changes in operating conditions, elastomeric couplings protect the system by absorbing excess energy and preventing damage to connected machinery. This protection helps avoid costly downtime and repairs.

8. Easy Installation and Maintenance:

The simplicity of elastomeric coupling designs facilitates easy installation and maintenance, reducing downtime and maintenance costs. Periodic inspections and lubrication, where required, help maintain the coupling’s efficiency and extend its service life.

Overall, elastomeric couplings enhance mechanical system efficiency by optimizing power transmission, compensating for misalignments, reducing vibrations and noise, absorbing shock loads, and providing cost-effective and reliable performance. Properly selected and maintained elastomeric couplings contribute to the smooth and efficient operation of various industrial machinery and equipment.

elastomeric coupling

Safety Considerations When Using Elastomeric Couplings in High-Speed or Heavy-Load Applications

When using elastomeric couplings in high-speed or heavy-load applications, there are several important safety considerations to ensure reliable and safe operation. These considerations help prevent potential hazards and mitigate risks associated with the coupling’s performance under demanding conditions:

1. Coupling Selection:

Choose an elastomeric coupling specifically designed and rated for high-speed and heavy-load applications. Ensure the coupling’s torque and speed ratings exceed the maximum requirements of your application to prevent overloading.

2. Dynamic Balancing:

For high-speed applications, ensure that the coupling and the connected equipment are dynamically balanced. Imbalances can lead to significant vibrations, which may cause premature wear, fatigue, and ultimately failure of the coupling or connected machinery.

3. Misalignment Limits:

Monitor and control misalignment between shafts within the coupling’s allowable limits. Excessive misalignment can cause additional stresses on the elastomeric material and reduce coupling life.

4. Temperature Monitoring:

Monitor the operating temperature of the coupling, especially during high-speed or high-load operations. Elevated temperatures can accelerate elastomer degradation and affect the coupling’s flexibility and damping characteristics.

5. Regular Inspection:

Perform regular visual inspections of the coupling to check for signs of wear, damage, or misalignment. Promptly address any issues to prevent potential safety risks.

6. Avoid Shock Loads:

Avoid subjecting the coupling to sudden shock loads, especially in high-load applications. Sudden shock loads can lead to excessive stress on the elastomer, causing it to fail prematurely.

7. Load Capacity:

Ensure that the coupling’s load capacity matches or exceeds the maximum loads expected in the application. Operating the coupling near its maximum capacity for prolonged periods may decrease its lifespan.

8. Installation Quality:

Ensure that the elastomeric coupling is installed correctly following the manufacturer’s guidelines. Proper installation prevents misalignment and ensures the coupling can handle the anticipated loads and speeds safely.

By carefully considering these safety measures and adhering to manufacturer recommendations, you can use elastomeric couplings effectively and safely in high-speed or heavy-load applications. Regular maintenance, monitoring, and adherence to safety guidelines will help prevent accidents, minimize downtime, and ensure the longevity and reliability of your coupling system.

elastomeric coupling

Limitations and Drawbacks of Using Elastomeric Couplings in Specific Scenarios

While elastomeric couplings offer several advantages, they may not be the ideal choice for every scenario. There are some limitations and drawbacks to consider, particularly in specific industrial applications. Here are some key points to be aware of:

1. Torque Capacity:

Elastomeric couplings may have limitations in handling high torque levels. In heavy-duty applications with significant torque requirements, a different type of coupling, such as a gear coupling or grid coupling, might be more suitable.

2. Temperature Range:

Elastomeric materials have temperature limitations. In environments with extreme temperatures, such as high-temperature industrial processes or cryogenic applications, elastomeric couplings may degrade or lose their flexibility, affecting their performance and lifespan.

3. Chemical Compatibility:

Some chemicals or aggressive substances may degrade the elastomeric material used in the coupling. In such cases, alternative coupling materials, like stainless steel or special coatings, should be considered.

4. High-Speed Applications:

In applications with high rotational speeds, elastomeric couplings might experience dynamic issues like resonance or flutter, which can lead to premature wear or failure. High-speed applications often require specialized couplings, such as disc couplings or diaphragm couplings.

5. Stiffness and Torsional Rigidity:

For applications requiring precise motion control or minimal angular deflection, elastomeric couplings might not provide the necessary stiffness or torsional rigidity. In such cases, rigid couplings or precision couplings are better suited.

6. Axial Load Handling:

Elastomeric couplings are primarily designed for torque transmission and misalignment compensation. They may not be suitable for handling significant axial loads between connected shafts.

7. Maintenance in Harsh Environments:

In environments with abrasive particles, high humidity, or other harsh conditions, elastomeric couplings might require more frequent maintenance to prevent premature wear.

8. Space Limitations:

Due to their flexible design, elastomeric couplings might require more space compared to some other coupling types. In compact or space-constrained applications, alternative couplings with more compact designs might be preferred.

Despite these limitations, elastomeric couplings remain highly versatile and effective in numerous industrial applications. However, it’s crucial to carefully consider the specific requirements and operating conditions of each application to determine whether an elastomeric coupling is the best choice or if an alternative coupling type might be more suitable.

China best Flexible Coupling Flange Industrial Shaft Rubber Motor Disc Drive Stainless Steel Couplings Best Transmission Parts High Quality Good Price Flexible Coupling  China best Flexible Coupling Flange Industrial Shaft Rubber Motor Disc Drive Stainless Steel Couplings Best Transmission Parts High Quality Good Price Flexible Coupling
editor by CX 2023-09-04

China factory Flexible Coupling Flange Industrial Shaft Rubber Motor Disc Drive Stainless Steel Couplings Best Transmission Parts High Quality Good Price Flexible Coupling

Product Description

Flexible Coupling Flange Industrial Shaft Rubber Motor Disc Drive Stainless Steel Couplings Best Transmission Parts High Quality Good Price Flexible Coupling

Application of Flexible Coupling

Flexible couplings are used to transmit torque from 1 shaft to another while allowing for some misalignment between the shafts. This makes them ideal for applications where the shafts are not perfectly aligned, such as when the equipment is installed in a new location or when the equipment is subject to vibration.

Flexible couplings are available in a variety of types, each with its own advantages and disadvantages. Some of the most common types of flexible couplings include:

  • Jaw couplings: Jaw couplings are made of 2 or more jaws that are clamped together around the shafts. The jaws allow the shafts to move slightly relative to each other, which helps to compensate for misalignment. Jaw couplings are relatively inexpensive and easy to install.
  • Hitchcock couplings: Hitchcock couplings are made of a series of discs that are connected by springs. The discs allow the shafts to move slightly relative to each other, which helps to compensate for misalignment. Hitchcock couplings are more expensive than jaw couplings, but they are also more durable.
  • Spider couplings: Spider couplings are made of a series of spiders that are connected by springs. The spiders allow the shafts to move slightly relative to each other, which helps to compensate for misalignment. Spider couplings are more expensive than jaw couplings and Hitchcock couplings, but they are also more durable and can withstand higher torques.

The best type of flexible coupling for a particular application will depend on the specific requirements of that application. Factors to consider include the amount of misalignment that needs to be compensated for, the torque that needs to be transmitted, and the cost.

Here are some of the applications of flexible couplings:

  • Machine tools: Flexible couplings are used in machine tools to transmit power from the motor to the machine. This allows the machine to operate even if the motor and machine shafts are not perfectly aligned.
  • Conveyors: Flexible couplings are used in conveyors to transmit power from the motor to the conveyor belt. This allows the conveyor to operate even if the motor and conveyor belt shafts are not perfectly aligned.
  • Pumps: Flexible couplings are used in pumps to transmit power from the motor to the pump shaft. This allows the pump to operate even if the motor and pump shafts are not perfectly aligned.
  • Fans: Flexible couplings are used in fans to transmit power from the motor to the fan shaft. This allows the fan to operate even if the motor and fan shafts are not perfectly aligned.
  • Compressors: Flexible couplings are used in compressors to transmit power from the motor to the compressor shaft. This allows the compressor to operate even if the motor and compressor shafts are not perfectly aligned.

Overall, flexible couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, but they also have some disadvantages. The best type of coupling for a particular application will depend on the specific requirements of that application.

disc coupling

Handling Torque and Torsional Stiffness in Disc Couplings

Disc couplings are engineered to handle high levels of torque and provide excellent torsional stiffness. The design of disc couplings allows them to transmit torque efficiently while maintaining their torsional rigidity. The flexible discs are designed to absorb misalignments and compensate for slight angular, axial, and radial deviations.

The discs themselves are precision-made with carefully calculated geometry, ensuring that they can transmit torque smoothly and evenly across their surface. The arrangement of multiple discs in a stack contributes to the coupling’s ability to accommodate high torque loads without sacrificing torsional stiffness.

Due to their torsionally stiff construction, disc couplings are capable of maintaining accurate shaft alignment even under significant torque transmission. This makes them suitable for applications requiring precise positioning, consistent torque transfer, and minimal backlash.

disc coupling

Maintaining and Extending the Lifespan of Disc Couplings

Proper maintenance is crucial to ensure the longevity and reliable performance of disc couplings. Here are the best practices:

  1. Regular Inspections: Conduct visual inspections to identify signs of wear, corrosion, or damage. Regular checks help detect issues early.
  2. Lubrication: Follow manufacturer recommendations for lubrication intervals and use the appropriate lubricants. Proper lubrication reduces friction and wear between disc elements.
  3. Alignment: Ensure proper alignment of the coupling and connected shafts. Misalignment can lead to premature wear and decreased coupling efficiency.
  4. Torque Monitoring: Monitor torque levels and load variations to identify abnormal fluctuations. Address sudden changes promptly to prevent further damage.
  5. Vibration Analysis: Use vibration analysis tools to detect and mitigate excessive vibration. Vibration can accelerate wear and affect machinery performance.
  6. Temperature Management: Monitor operating temperatures to avoid overheating. Excessive heat can lead to premature wear and material degradation.
  7. Load Consideration: Ensure the coupling is not subjected to loads beyond its capacity. Overloading can lead to accelerated wear and potential failure.
  8. Environmental Factors: Protect the coupling from contaminants, moisture, and corrosive substances that can accelerate deterioration.
  9. Timely Repairs: Address any identified issues promptly. Replace worn or damaged components to prevent further degradation.
  10. Professional Assistance: If you encounter complex issues, consider involving experienced technicians or engineers for diagnosis and repair.

Following these practices helps maintain optimal performance, extend the lifespan of disc couplings, and contribute to the overall efficiency and reliability of machinery systems.

disc coupling

Disc Couplings: Function and Application in Mechanical Systems

A disc coupling is a type of flexible coupling used in mechanical systems to connect two shafts while allowing for angular misalignment, axial movement, and some degree of torsional flexibility. It consists of two hubs with flexible metallic discs, known as diaphragms, positioned between them.

Disc couplings are commonly utilized in various industrial applications where precise power transmission, reliability, and flexibility are essential. Some key features and applications of disc couplings include:

  • High Torque Transmission: Disc couplings are designed to transmit high torque loads between shafts while maintaining shaft alignment. The flexible diaphragms can accommodate misalignments and prevent torque overloads on connected equipment.
  • Angular Misalignment Compensation: The design of disc couplings allows them to handle angular misalignment between shafts, which can occur due to manufacturing tolerances or dynamic conditions.
  • Axial Movement Absorption: Disc couplings can absorb limited axial movement along the shaft axis without transferring excessive forces to the connected components.
  • Torsional Flexibility: The metallic diaphragms of disc couplings offer torsional flexibility, enabling them to dampen vibrations and shock loads. This helps protect connected equipment from damage and increases overall system reliability.
  • Precision Machinery: Disc couplings are often employed in precision machinery and equipment, such as CNC machines, robotics, pumps, compressors, and servo systems. These applications require accurate motion control and reliable power transmission.
  • High-Speed Applications: Due to their balanced design and ability to maintain precise alignment, disc couplings are suitable for high-speed applications where even a small misalignment can lead to vibration and wear.

The ability of disc couplings to provide both flexibility and precise torque transmission makes them a preferred choice in various industries, including manufacturing, aerospace, automotive, and more. Proper selection, installation, and maintenance of disc couplings contribute to improved machinery performance, reduced downtime, and extended component life.

China factory Flexible Coupling Flange Industrial Shaft Rubber Motor Disc Drive Stainless Steel Couplings Best Transmission Parts High Quality Good Price Flexible Coupling  China factory Flexible Coupling Flange Industrial Shaft Rubber Motor Disc Drive Stainless Steel Couplings Best Transmission Parts High Quality Good Price Flexible Coupling
editor by CX 2023-08-21

China Olearn Coupling Bore 5mm 8mm 3D Printers Parts Blue Flexible Shaft Coupler Screw Part for Stepper Motor Accessories coupling decoupling network

Solution Description

                            CZPT Rigid coupling

Our organization sale A variety of Dimensions Rigid Coupling, and other item all related with 3D printer components and CNC Equipment areas. 
If you can not found some solution what you want in our store, pls get in touch with us with your request, we will make very good quotation for you, many thanks!

Description

  • Link Diameter: 5mm to 8mm, Total Duration: 25mm /.98 inch, Outdoors Diameter : 14mm/ .55 inch.
  • Broadly employed in blowers,3D printer,Do-it-yourself robots,CNC equipment,stepper motors,and many others. Similar to rigid clamp couplings, shaft couplers are utilized to maintain bearings and sprockets tightly on the shaft, and are utilised in motor and gearbox assemblies.
  • Prime limited type rigid coupling with 2/4 screws to hold the shaft tightly high torque with rigidity, reduced inertia and excellent sensitivity.
  • Observe: The rigid variety basically does not permit eccentricity, and it should be entirely adjusted throughout use.
  • One piece set screw clamp layout tends to make it simple to set up the items on the shaft and control the holding capacity of the coupling.

 

 

Our Company 
OLEARN is trademark brand in China, owned by HangZhou CZPT Engineering Co., Ltd.
We target on generic 3D printer elements and CNC components, stock all of them for rapidly shipping.
Welcome to inquiry for more element about 3d printer spare components and cnc elements.
Below is our office world wide web, welcome to open and search!

BE YOUR CHINA SOURCING AGENT
Hi there everyone,If you want to purchase product from China, make sure you give me your solution record, permit me give you a estimate. Our business is targeted on supplying CNC/3D PRINTER parts and components. We have our personal CNC processing plant, and cooperate with some other factories, this will aid manage fees and ensure high quality.
If you want to perform with individual who can make your china sourching perform a lot more handy and successful,our business will be your best choose!

Payment

– We acknowledge T/T,Western Union and Paypal.

 

Shipping
For the shipping and delivery problem, we cooperate with a professional forwarder firm which would deal with all the problems for you for the duration of the delivery procedure with 7~ten doing work days super quick arrival time. 
Also if you had formal Convey Account, we can also supply the goods to you through Official Express directly.

FAQ
Q:What is the merchandise all set time?
A:If we have ample units in inventory, the merchandise ready time would be within 3 doing work times.

Q:Do you supply samples ? is it free or extra ?
A: Yes, we could offer the sample for cost-free cost but do not pay out the cost of freight.

Q:What’s your value term.
A: Generally FOB CIF CFR EX-function,DDP,DDU etc.

Standard Or Nonstandard: Standard
Shaft Hole: 8-24
Torque: >80N.M
Bore Diameter: 19mm
Speed: 10000r/M
Structure: Rigid

###

Samples:
US$ 0.63/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Standard Or Nonstandard: Standard
Shaft Hole: 8-24
Torque: >80N.M
Bore Diameter: 19mm
Speed: 10000r/M
Structure: Rigid

###

Samples:
US$ 0.63/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

What Is a Coupling?

A coupling is a mechanical device that links two shafts together and transmits power. Its purpose is to join rotating equipment while permitting a small amount of misalignment or end movement. Couplings come in a variety of different types and are used in a variety of applications. They can be used in hydraulics, pneumatics, and many other industries.
gearbox

Types

Coupling is a term used to describe a relationship between different modules. When a module depends on another, it can have different types of coupling. Common coupling occurs when modules share certain overall constraints. When this type of coupling occurs, any changes to the common constraint will also affect the other modules. Common coupling has its advantages and disadvantages. It is difficult to maintain and provides less control over the modules than other types of coupling.
There are many types of coupling, including meshing tooth couplings, pin and bush couplings, and spline couplings. It is important to choose the right coupling type for your specific application to get maximum uptime and long-term reliability. Listed below are the differences between these coupling types.
Rigid couplings have no flexibility, and require good alignment of the shafts and support bearings. They are often used in applications where high torque is required, such as in push-pull machines. These couplings are also useful in applications where the shafts are firmly attached to one another.
Another type of coupling is the split muff coupling. This type is made of cast iron and has two threaded holes. The coupling halves are attached with bolts or studs.
gearbox

Applications

The coupling function is an incredibly versatile mathematical tool that can be used in many different scientific domains. These applications range from physics and mathematics to biology, chemistry, cardio-respiratory physiology, climate science, and electrical engineering. The coupling function can also help to predict the transition from one state to another, as well as describing the functional contributions of subsystems in the system. In some cases, it can even be used to reveal the mechanisms that underlie the functionality of interactions.
The coupling selection process begins with considering the intended use of the coupling. The application parameters must be determined, as well as the operating conditions. For example, if the coupling is required to be used for power transmission, the design engineer should consider how easily the coupling can be installed and serviced. This step is vital because improper installation can result in a more severe misalignment than is specified. Additionally, the coupling must be inspected regularly to ensure that the design parameters remain consistent and that no detrimental factors develop.
Choosing the right coupling for your application is an important process, but it need not be difficult. To find the right coupling, you must consider the type of machine and environment, as well as the torque, rpm, and inertia of the system. By answering these questions, you will be able to select the best coupling for your specific application.
gearbox

Problems

A coupling is a device that connects two rotating shafts to transfer torque and rotary motion. To achieve optimal performance, a coupling must be designed for the application requirements it serves. These requirements include service, environmental, and use parameters. Otherwise, it can prematurely fail, causing inconvenience and financial loss.
In order to prevent premature failure, couplings should be properly installed and maintained. A good practice is to refer to the specifications provided by the manufacturer. Moreover, it is important to perform periodic tests to evaluate the effectiveness of the coupling. The testing of couplings should be performed by qualified personnel.
China Olearn Coupling Bore 5mm 8mm 3D Printers Parts Blue Flexible Shaft Coupler Screw Part for Stepper Motor Accessories     coupling decoupling networkChina Olearn Coupling Bore 5mm 8mm 3D Printers Parts Blue Flexible Shaft Coupler Screw Part for Stepper Motor Accessories     coupling decoupling network
editor by czh 2023-01-21

china Cost Water Pump Parts Factory Manufacturer China Standard Taper Bore Cast Iron HRC Flexible Water Pump Shaft Coupling for Electric Motor manufacturers

Merchandise Description

CZPTproduct-group/ebxQRicPJLhq/Water-Pump-Parts-catalog-1.html

Description:

Allowing swift and easy set up by signifies of Taper Lock bushes, and offering fast alignment, the semi-elastic common function HRC coupling is best for use with electrical motors.

Feautres:

  • Offers the simplest, most straightforward fitting CZPT
  • Relieve of alignment and fitting employing straight edge and machined outdoors diameters
  • Fall short-secure layout owing to interacting puppy style
  • Accommodates incidental misalignment
  • Extraordinary functionality at low price
  • Power rankings are matched to common motor measurements
  • Regular and FRAS aspects CZPT
  • Flywheel correcting variant CZPT
  • Pilot bore style also CZPT

Specification:

1.Material:The hub of the CZPT s is Solid Iron,the Elastomer is CZPT .

two.Surface treatmen:Generally Phosphated and portray.

three.Characteristic of couplings:Totally free of upkeep,simple composition and effortless to put in.

4.Application:Mainly used in the mining, metallurgical, cement, chemicals, construction, building materials, electric power, telecommunications, textiles, and transportation departments.

Much more Photographs:

Warehouse, Workshop and Deal:

Edge of Our Organization
 

  • twenty Years’ ordeals on pump design and manufacturing.
  • Complete established of imported pump screening services.
  • IP CZPT and CZPT providers CZPT .
  • Plenty of iron casting sources close to.
  • three hours’ generate from most significant Seaport in CZPT , ZheJiang Seaport.
  • Knowledgeable enough to make CZPT pumps.
  • Modest adequate to take care what you care.

 

 

FAQ

Q: Do you give samples ? is it free or further ?
A: Sure, we could offer you the sample for totally free if the expense is below USD20 with freight on your price.

Q: How CZPT is your delivery time?
A: Normally it is 5 days if the merchandise are in inventory. Or it is 15 days if the items are not in inventory, it is according to amount.

Q. what is your payment term? 
A: T/T 30% payment in CZPT , balance to be paid prior  shipment.

Q: what is your main market?
A: ,Western Europe,North America, South America, Eastern Europe, Southeast Asia, Africa, Oceania, Mid East, Eastern Asia. 

Q: Can I have my very own CZPT ized item?
A: Of course, we can provide emblem Print and package deal desiged based in CZPT MOQ.

 

china  Cost Water Pump Parts Factory Manufacturer China Standard Taper Bore Cast Iron HRC Flexible Water Pump Shaft Coupling for Electric Motor manufacturers

ODM manufacturer made in China – replacement parts – in Bauchi Nigeria OEM Toothed Belt Pulley for Electric Motor with top quality

ODM  manufacturer  made in China - replacement parts -   in Bauchi Nigeria  OEM Toothed Belt Pulley for Electric Motor with top quality

We – EPG Team the bigge EPT gearbox & motors , vee pulleys, timing pulleys, couplings and gears manufacturing facility in China with 5 different branches. For far more details: Cellular/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778 0571 88828

Product specification
1.Material:C 45# steel ,stainless metal or EPT necessary resources.

2.Sprockets can be manufactured in accordance the customer’s drawings

3.Heat remedy: Hardening and Tempering, Substantial Frequency Quenching, Carburizing Quenching and so on according the specifications..

4. Inspection: All objects are checked and examined thoroughly throughout each and every operating procedure and after manufacturing will be reinspected.

About us
HangZhou EPT Sprocket Co., Ltd. is a specialist maker of numerous sprocket wheels, stainless steel sprocket wheels, non-common sprocket wheels, large pitch sprocket wheels, coupling sprocket wheels, spur gears, timing belt wheels, equipment racks, umbrella Equipment, worm gear, shaft, sleeve and EPT transmission areas companies. And according to customer drawings, samples, dimensions processing custom made generation. The firm integrates layout R & D, producing and income. In accordance with stringent manufacturing, inspection and top quality specifications, the firm has recognized a complete quality method, generation approach and best high quality manage. The company’s sprocket products are of large high quality, security and longevity.

The company now has eighty sets of a variety of high-precision CNC lathes, gear hobbing devices, gear shapers, tempering furnaces, quenching gear, gantry planers, common milling, sawing devices, vertical broaching equipment, hydraulic equipment and EPT processing equipment, with an once-a-year creation capacity of 2 million pieces . Carburizing and quenching, nitriding, quenching and EPT warmth therapy, surface area blackening, galvanizing, electrophoresis, etc. At the same time, it also has high-precision screening tools this kind of as: Rockwell hardness tester, Vickers hardness tester, metallographic microscope, image measuring instrument, Magnetic particle flaw detectors, etc. The goods developed are commonly utilized in metallurgy, steel, chemical, textile, agricultural machinery, 3-dimensional garages, packaging machinery, chemical equipment, pharmaceutical equipment, industrial and mining machinery and EPT industries. The product indicators fulfill the specifications of importing related merchandise and are exported to Hong Kong and ZheJiang , Southea EPT Asia, Europe, America, the Middle Ea EPT and EPT locations, and are deeply reliable and praised by clients.

FAQ
Q: Are you trading firm or maker ?
A: We are manufacturing facility.

Q: How lengthy is your supply time?
A: Normally it is 5-ten times if the merchandise are in inventory. or it is fifteen-20 times if the items are not in stock, it is according to amount.

Q: Do you supply samples ? is it cost-free or added ?
A: Yes, we could offer the sample for free demand but do not shell out the co EPT of freight.

Q: What is your terms of payment ?
A: Payment 30%TT in advance. 70% T/T just before shippment.

Q:What`s the MOQ of your items?
A:1 established,we can also deal with the sample get. and the big-amount.

We – EPG Group the bigge EPT gearbox & motors , vee pulleys, timing pulleys, couplings and gears factory in China with 5 various branches. For far more details: Cell/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778 0571 88828 The use of first products manufacturer’s (OEM) part figures or emblems , e.g. CASE® and John Deere® are for reference purposes only and for indicating product use and compatibility. Our company and the listed replacement elements contained herein are not sponsored, accredited, or created by the OEM.

ODM  manufacturer  made in China - replacement parts -   in Bauchi Nigeria  OEM Toothed Belt Pulley for Electric Motor with top quality

ODM  manufacturer  made in China - replacement parts -   in Bauchi Nigeria  OEM Toothed Belt Pulley for Electric Motor with top quality