Tag Archives: flexible gear couplings

China Custom High Flexible Couplings H110 (Equivalent to N-EUPEX series B type coupling) gear coupling

Product Description

SYPT H-EUPEX high flexible couplings are for shaft connection of machines,they compensate for shaft misalignment,generating only low  restorative forces.

 

The torque is conducted through elastomer flexibles, so the coupling  has typically flexible rubber properties.

The flexible inserts of the H-EUPEX coupling are subjected to compression. If the flexible inserts are irreparably damaged, the hub parts  come into contact with metal. This “emergency operation capability” is required, etc., in the case of fire pump drives.
 

The motor torque is transmitted to the hub at the drive end via  the shaft-hub connection, which is mostly designed as a keyway connection. The torque is transmitted to the hub on the output  side with the aid of elastomer flexible inserts. The hub on the output  side further transmits the torque to the driven machine or a gear  unit placed in between. Because of the primarily compressionloaded  elastomer flexible inserts, the coupling has a progressive  torsional  stiffness.

 

 

Parts No.     part 1+part4

 

 

Please contact us to learn more.

flange coupling

How Does a Gear Coupling Protect Connected Equipment from Shock Loads and Vibrations?

Gear couplings are designed to provide excellent protection to connected equipment from shock loads and vibrations, making them ideal for use in demanding and heavy-duty applications. The design and features of gear couplings that contribute to this protection include:

  • Flexible and Rigid Elements: Gear couplings consist of two hubs with external gears that mesh together. Between these two hubs, there is a center sleeve with internal gear teeth. The center sleeve acts as a flexible element, while the outer hubs act as rigid elements. This combination allows the gear coupling to transmit torque while absorbing and dampening shock loads and vibrations.
  • Misalignment Compensation: Gear couplings can accommodate angular, parallel, and axial misalignment between shafts. When the connected equipment experiences misalignment due to dynamic forces or shock loads, the gear coupling can flex and adjust to these changes, preventing excessive stress on the shafts and equipment.
  • High Torsional Stiffness: Gear couplings offer high torsional stiffness, meaning they have minimal angular deflection under load. This stiffness helps maintain precise alignment and reduces the likelihood of damage to the connected equipment caused by misalignment-induced vibrations.
  • Load Distribution: The toothed gear design of gear couplings ensures a large surface area of contact between the gears. This spreads the torque evenly across the gear teeth, resulting in a uniform distribution of load and reducing the concentration of stress on specific areas.
  • Damping Characteristics: The flexible center sleeve in the gear coupling acts as a damping element that absorbs and dissipates vibrations, further protecting the connected equipment from harmful oscillations.
  • High-Speed Balancing: Gear couplings are precisely balanced during manufacturing to minimize vibrations and ensure smooth operation even at high speeds. Proper balancing helps prevent resonances and reduces the impact of shock loads on the connected equipment.

By effectively absorbing and dampening shock loads and vibrations, gear couplings extend the life of the connected equipment and surrounding components, reduce maintenance requirements, and contribute to a more reliable and efficient mechanical system. However, it is essential to select the appropriate size and type of gear coupling based on the specific application and operating conditions to ensure optimal protection and performance.

China Custom High Flexible Couplings H110 (Equivalent to N-EUPEX series B type coupling)  gear couplingChina Custom High Flexible Couplings H110 (Equivalent to N-EUPEX series B type coupling)  gear coupling
editor by CX 2023-12-04

China Professional Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description

 Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc CHINAMFG Flex Rigid Drive Shaft NM yox Fluid Jaw Flexible Chain Gear Couplings

Manufacturer of Couplings, Fluid Coupling, JAW Coupling, can interchange and replacement of lovejoy coupling and so on.

A coupling can interchange and replacement of lovejoy coupling is a device used to connect 2 shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join 2 pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

 

Coupling is a jaw type coupling that works for a variety of light duty to heavy duty motors used in electric power transmission.

This is 1 of our safest types of products. The reason being that these couplings work even when the elastomer fails and there is no metal to metal contact.

They perform in well-standing oil, grease, moisture, sand, and dirt and nearly 850,000 bore combinations that can be customised as per the customer’s needs.

They are used in light-weight, medium, or heavy electrical motors and devices for power transmission through internal combustion.

Production workshop:
Company information:

disc coupling

Comparison of Disc Couplings with Other Coupling Types

When comparing disc couplings with other coupling types like jaw couplings and elastomeric couplings, several factors come into play:

  • Flexibility: Disc couplings offer high flexibility and misalignment compensation, similar to elastomeric couplings, making them suitable for applications with angular, axial, and parallel misalignment.
  • Torsional Stiffness: Jaw couplings are known for their high torsional stiffness, which is suitable for precision applications. Disc couplings offer a balance between flexibility and stiffness.
  • Misalignment Compensation: Disc couplings excel in accommodating misalignment, whereas elastomeric couplings and jaw couplings are better suited for lower degrees of misalignment.
  • Vibration Damping: Elastomeric couplings provide excellent vibration damping due to their rubber elements. Disc couplings can also dampen vibrations to some extent.
  • Compactness: Jaw couplings and elastomeric couplings are relatively compact, making them suitable for space-constrained applications. Disc couplings are larger in size but offer higher torque capacity.
  • Torque Capacity: Disc couplings generally have higher torque capacity compared to elastomeric couplings and jaw couplings.
  • Installation and Maintenance: Disc couplings and elastomeric couplings are typically easier to install and require less maintenance compared to jaw couplings.
  • Material Options: All three coupling types are available in various materials, allowing for compatibility with different environments.

The choice between disc couplings, jaw couplings, and elastomeric couplings depends on the specific requirements of the application, including torque, misalignment, vibration, and stiffness considerations. Each coupling type has its strengths, and selecting the right one involves evaluating these factors to achieve optimal performance and reliability.

disc coupling

Maintaining and Extending the Lifespan of Disc Couplings

Proper maintenance is crucial to ensure the longevity and reliable performance of disc couplings. Here are the best practices:

  1. Regular Inspections: Conduct visual inspections to identify signs of wear, corrosion, or damage. Regular checks help detect issues early.
  2. Lubrication: Follow manufacturer recommendations for lubrication intervals and use the appropriate lubricants. Proper lubrication reduces friction and wear between disc elements.
  3. Alignment: Ensure proper alignment of the coupling and connected shafts. Misalignment can lead to premature wear and decreased coupling efficiency.
  4. Torque Monitoring: Monitor torque levels and load variations to identify abnormal fluctuations. Address sudden changes promptly to prevent further damage.
  5. Vibration Analysis: Use vibration analysis tools to detect and mitigate excessive vibration. Vibration can accelerate wear and affect machinery performance.
  6. Temperature Management: Monitor operating temperatures to avoid overheating. Excessive heat can lead to premature wear and material degradation.
  7. Load Consideration: Ensure the coupling is not subjected to loads beyond its capacity. Overloading can lead to accelerated wear and potential failure.
  8. Environmental Factors: Protect the coupling from contaminants, moisture, and corrosive substances that can accelerate deterioration.
  9. Timely Repairs: Address any identified issues promptly. Replace worn or damaged components to prevent further degradation.
  10. Professional Assistance: If you encounter complex issues, consider involving experienced technicians or engineers for diagnosis and repair.

Following these practices helps maintain optimal performance, extend the lifespan of disc couplings, and contribute to the overall efficiency and reliability of machinery systems.

disc coupling

Disc Couplings: Function and Application in Mechanical Systems

A disc coupling is a type of flexible coupling used in mechanical systems to connect two shafts while allowing for angular misalignment, axial movement, and some degree of torsional flexibility. It consists of two hubs with flexible metallic discs, known as diaphragms, positioned between them.

Disc couplings are commonly utilized in various industrial applications where precise power transmission, reliability, and flexibility are essential. Some key features and applications of disc couplings include:

  • High Torque Transmission: Disc couplings are designed to transmit high torque loads between shafts while maintaining shaft alignment. The flexible diaphragms can accommodate misalignments and prevent torque overloads on connected equipment.
  • Angular Misalignment Compensation: The design of disc couplings allows them to handle angular misalignment between shafts, which can occur due to manufacturing tolerances or dynamic conditions.
  • Axial Movement Absorption: Disc couplings can absorb limited axial movement along the shaft axis without transferring excessive forces to the connected components.
  • Torsional Flexibility: The metallic diaphragms of disc couplings offer torsional flexibility, enabling them to dampen vibrations and shock loads. This helps protect connected equipment from damage and increases overall system reliability.
  • Precision Machinery: Disc couplings are often employed in precision machinery and equipment, such as CNC machines, robotics, pumps, compressors, and servo systems. These applications require accurate motion control and reliable power transmission.
  • High-Speed Applications: Due to their balanced design and ability to maintain precise alignment, disc couplings are suitable for high-speed applications where even a small misalignment can lead to vibration and wear.

The ability of disc couplings to provide both flexibility and precise torque transmission makes them a preferred choice in various industries, including manufacturing, aerospace, automotive, and more. Proper selection, installation, and maintenance of disc couplings contribute to improved machinery performance, reduced downtime, and extended component life.

China Professional Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China Professional Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2023-10-16

China supplier Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings gear coupling

Product Description


Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!

How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;

2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;

3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;

4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.

5. We can arrange a technical communication meeting with you and our engineers together anytime if required.

Place of origin: Jangsu,China
Type: Powder metallurgy sintering
Spare parts type: Powder metallurgy parts
Machinery Test report: Provided
Material: Iron,stainless,steel,copper
Key selling points: Quality assurance
Mould type: Tungsten steel
Material standard: MPIF 35,DIN 3571,JIS Z 2550
Application: Small home appliances,Lockset,Electric tool, automobile,
Brand Name: OEM SERVICE
Plating: Customized
After-sales Service: Online support
Processing: Powder Metallurgr,CNC Machining
Powder Metallurgr: High frequency quenching, oil immersion
Quality Control: 100% inspection

The Advantage of Powder Metallurgy Process

1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .

2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.

3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .

4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .

5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten. 

FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.

Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good. 

Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.

Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.

Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.

Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
    2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
 

flange coupling

How Does a Gear Coupling Handle Angular, Parallel, and Axial Misalignment?

Gear couplings are designed to handle various types of misalignment, including angular, parallel, and axial misalignment. Here’s how they handle each type:

  • Angular Misalignment: Angular misalignment occurs when the two connected shafts are not collinear and form an angle with each other. Gear couplings can accommodate angular misalignment due to the flexibility of their gear teeth. The gear teeth allow a slight angular movement between the shafts without causing significant stress on the coupling.
  • Parallel Misalignment: Parallel misalignment occurs when the two connected shafts are offset along their axis but remain parallel to each other. Gear couplings can handle parallel misalignment to some extent due to the slight axial movement allowed by the gear teeth. However, for larger parallel misalignments, special gear couplings with spacer elements or other features may be required.
  • Axial Misalignment: Axial misalignment occurs when the two connected shafts are not in the same axial plane and have an offset along their length. Gear couplings can handle a certain degree of axial misalignment because the gear teeth can accommodate small axial movements without causing damage to the coupling or connected equipment.

The ability of gear couplings to handle misalignment is one of their key advantages over other types of couplings. The gear teeth act as flexible elements that can compensate for minor misalignments, reducing the stress and wear on the coupling and the connected equipment. However, it is essential to ensure that the misalignment remains within the allowable limits specified by the coupling manufacturer to maintain optimal performance and reliability.

China supplier Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  gear couplingChina supplier Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  gear coupling
editor by CX 2023-10-06

China OEM Stainless Steel Coupling Transmission Machined Parts Gear Roller Chain Couplings Nm Mh Flange Elastic Spider Disc Elastomeric Rigid Jaw Flexible Shaft Coupling

Product Description

Stainless Steel Coupling Transmission Parts Gear High Quality Good Price Gear Roller Chain Couplings Nm Flange Flexible Elastomeric Stainless Steel Coupling

We are the leading top Chinese coupling manufacturer, and are specializing in various high quality coupling.
1. Material: Cast iron, Rubber.
2. OEM and ODM are available
3. High efficient in transmission
4. Finishing: Painted.
5. High quality with competitive price
6. Different models suitable for your different demands
7. Stock for different bore size on both sides available.
8. Application in wide range of environment.
9. Quick and easy mounting and disassembly.
10. Resistant to oil and electrical insulation.
11. Identical clockwise and anticlockwise rotational characteristics.
12. Small dimension, low weight, high transmitted torque.

13. It has good performance on compensating the misalignment.

Fluid couplings:

Features:

Improve the starting capability of electric motor, protect motor against overloading, damp shock, load

fluctuation and torsional vibration, and balance and load distribution in case of multimotor drives.

Applications:

Belt conveyers, csraper conveyers, and conveyers of all kinds Bucket elevators, ball mills, hoisters, crushers,

excavators, mixers, straighteners, cranes, etc.

Flange Flexible Coupling:

Flexible Coupling Model is widely used for its compact designing,easy installation,convenientmaintenance,small size and

light weight.As long as the’relative displacement between shafts is kept within the specified tolerance,the coupling will

operate the best function and a longer working life,thus it is greatly demanded in medium and minorpower transmission

systems drive by moters,such as speed reducers,hoists,compressor,spining &weaving machines and ball mills,permittable

relative displacement:Radial displacement 0.2-0.6mm ; Angel displacemente 0o 30′–1o 30′
 

Jaw Couplings:

Click here for more types of couplings

 

Our Services:

1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2.Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

Company Information:

 

 

 

 

elastomeric coupling

Differences Between Elastomeric Couplings Made from Different Materials

Elastomeric couplings can be manufactured using various materials, each offering unique properties that influence the coupling’s performance in different applications. Here are the key differences between couplings made from rubber, polyurethane, and silicone:

1. Rubber Elastomers:

Rubber elastomers are commonly used in elastomeric couplings due to their excellent resilience, flexibility, and damping properties. They can handle a wide range of temperatures and are resistant to abrasion and wear. Rubber couplings are ideal for general-purpose applications where moderate torque and misalignment compensation are required.

2. Polyurethane Elastomers:

Polyurethane elastomers provide higher strength and load-bearing capabilities compared to rubber. They have better resistance to oils, chemicals, and harsh environments. Polyurethane couplings are suitable for applications involving higher torque, shock loads, and exposure to aggressive substances.

3. Silicone Elastomers:

Silicone elastomers offer superior thermal stability and can withstand extreme temperature variations. They exhibit excellent electrical insulation properties and are resistant to aging and weathering. Silicone couplings are often used in applications that require high-temperature resistance and electrical isolation.

4. Damping and Resilience:

Rubber generally provides better damping properties, making it effective in reducing vibrations and noise. Polyurethane offers higher resilience, which can be advantageous in applications with frequent torque spikes and shock loads. Silicone combines good damping with high-temperature resistance.

5. Environmental Compatibility:

Polyurethane and silicone couplings tend to have better resistance to chemicals, oils, and extreme temperatures, making them suitable for demanding environments. Rubber couplings may have limitations in certain aggressive chemical environments.

6. Cost and Performance Balance:

The choice of material also affects the cost of the coupling. Rubber is generally more cost-effective, while polyurethane and silicone may be more expensive but offer specific performance advantages in certain applications.

When selecting an elastomeric coupling, it is crucial to consider the specific requirements of the application, such as torque, speed, misalignment, temperature range, and chemical exposure. The material choice should align with the demands of the operating conditions to ensure optimal coupling performance and longevity.

elastomeric coupling

Safety Considerations When Using Elastomeric Couplings in High-Speed or Heavy-Load Applications

When using elastomeric couplings in high-speed or heavy-load applications, there are several important safety considerations to ensure reliable and safe operation. These considerations help prevent potential hazards and mitigate risks associated with the coupling’s performance under demanding conditions:

1. Coupling Selection:

Choose an elastomeric coupling specifically designed and rated for high-speed and heavy-load applications. Ensure the coupling’s torque and speed ratings exceed the maximum requirements of your application to prevent overloading.

2. Dynamic Balancing:

For high-speed applications, ensure that the coupling and the connected equipment are dynamically balanced. Imbalances can lead to significant vibrations, which may cause premature wear, fatigue, and ultimately failure of the coupling or connected machinery.

3. Misalignment Limits:

Monitor and control misalignment between shafts within the coupling’s allowable limits. Excessive misalignment can cause additional stresses on the elastomeric material and reduce coupling life.

4. Temperature Monitoring:

Monitor the operating temperature of the coupling, especially during high-speed or high-load operations. Elevated temperatures can accelerate elastomer degradation and affect the coupling’s flexibility and damping characteristics.

5. Regular Inspection:

Perform regular visual inspections of the coupling to check for signs of wear, damage, or misalignment. Promptly address any issues to prevent potential safety risks.

6. Avoid Shock Loads:

Avoid subjecting the coupling to sudden shock loads, especially in high-load applications. Sudden shock loads can lead to excessive stress on the elastomer, causing it to fail prematurely.

7. Load Capacity:

Ensure that the coupling’s load capacity matches or exceeds the maximum loads expected in the application. Operating the coupling near its maximum capacity for prolonged periods may decrease its lifespan.

8. Installation Quality:

Ensure that the elastomeric coupling is installed correctly following the manufacturer’s guidelines. Proper installation prevents misalignment and ensures the coupling can handle the anticipated loads and speeds safely.

By carefully considering these safety measures and adhering to manufacturer recommendations, you can use elastomeric couplings effectively and safely in high-speed or heavy-load applications. Regular maintenance, monitoring, and adherence to safety guidelines will help prevent accidents, minimize downtime, and ensure the longevity and reliability of your coupling system.

elastomeric coupling

Maintenance Requirements for Elastomeric Couplings to Ensure Optimal Performance and Longevity

Elastomeric couplings are known for their relatively low maintenance requirements, but regular inspection and care are essential to ensure their optimal performance and longevity. Here are the key maintenance practices for elastomeric couplings:

1. Visual Inspection:

Regularly inspect the coupling for signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric element and any visible signs of deterioration.

2. Lubrication:

Most elastomeric couplings do not require lubrication, as the elastomeric material acts as a self-lubricating element. However, check with the manufacturer’s recommendations to ensure your specific coupling type does not require any lubrication.

3. Misalignment Check:

Monitor the misalignment between the connected shafts to ensure it stays within the coupling’s allowable limits. Excessive misalignment can lead to premature wear and reduced coupling life.

4. Temperature Limits:

Keep the operating temperature within the specified limits for the elastomeric material. Extreme temperatures can degrade the elastomer and affect its flexibility and performance.

5. Environmental Protection:

Protect the coupling from exposure to chemicals, abrasive particles, and other harsh environmental elements that may accelerate wear and deterioration of the elastomeric material.

6. Regular Maintenance Schedule:

Follow a maintenance schedule recommended by the manufacturer or based on the specific operating conditions of your application. Regularly inspect and replace elastomeric couplings as needed to prevent unexpected failures.

7. Proper Installation:

Ensure the coupling is correctly installed following the manufacturer’s guidelines. Proper installation helps maintain the coupling’s alignment and prevents undue stresses on the elastomeric element.

8. Load Monitoring:

Regularly monitor the load and torque requirements of your application. Avoid overloading the coupling beyond its specified capacity, as this can lead to premature failure.

By following these maintenance practices, you can extend the life of your elastomeric couplings and ensure they continue to provide reliable and efficient power transmission in your industrial system. Remember that each application may have specific maintenance needs, so always refer to the manufacturer’s instructions and consult with experts if needed.

China OEM Stainless Steel Coupling Transmission Machined Parts Gear Roller Chain Couplings Nm Mh Flange Elastic Spider Disc Elastomeric Rigid Jaw Flexible Shaft Coupling  China OEM Stainless Steel Coupling Transmission Machined Parts Gear Roller Chain Couplings Nm Mh Flange Elastic Spider Disc Elastomeric Rigid Jaw Flexible Shaft Coupling
editor by CX 2023-09-27

China factory Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description


Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!

How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;

2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;

3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;

4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.

5. We can arrange a technical communication meeting with you and our engineers together anytime if required.

Place of origin: Jangsu,China
Type: Powder metallurgy sintering
Spare parts type: Powder metallurgy parts
Machinery Test report: Provided
Material: Iron,stainless,steel,copper
Key selling points: Quality assurance
Mould type: Tungsten steel
Material standard: MPIF 35,DIN 3571,JIS Z 2550
Application: Small home appliances,Lockset,Electric tool, automobile,
Brand Name: OEM SERVICE
Plating: Customized
After-sales Service: Online support
Processing: Powder Metallurgr,CNC Machining
Powder Metallurgr: High frequency quenching, oil immersion
Quality Control: 100% inspection

The Advantage of Powder Metallurgy Process

1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .

2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.

3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .

4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .

5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten. 

FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.

Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good. 

Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.

Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.

Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.

Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
    2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
 

fluid coupling

Factors Influencing the Thermal Performance of a Fluid Coupling

The thermal performance of a fluid coupling, specifically its ability to dissipate heat and maintain operating temperatures within acceptable limits, is influenced by several factors:

  • Power Rating: The power rating of the fluid coupling, which indicates its capacity to handle a specific amount of power, affects its thermal performance. Higher power ratings generally result in higher heat generation, so it’s essential to choose a fluid coupling with an adequate power rating for the application.
  • Operating Speed: The operating speed of the fluid coupling is a critical factor. Higher speeds can lead to increased heat generation due to friction and viscous losses. It’s essential to consider the operating speed to ensure the fluid coupling can handle the heat produced at the given speed.
  • Ambient Temperature: The ambient temperature of the environment in which the fluid coupling operates also plays a role in its thermal performance. Higher ambient temperatures can impact the cooling efficiency and may lead to increased operating temperatures.
  • Load Variation: Applications with varying loads can experience changes in heat generation. Fluid couplings used in such systems must be capable of handling the thermal effects of load fluctuations without exceeding temperature limits.
  • Cooling Method: The cooling method employed in the fluid coupling design significantly affects its thermal performance. Some fluid couplings use natural convection for cooling, while others incorporate forced cooling methods such as internal or external cooling circuits. The cooling system’s efficiency directly impacts the ability to dissipate heat effectively.
  • Fluid Properties: The properties of the fluid inside the coupling, such as viscosity and heat capacity, influence thermal performance. The choice of fluid can affect the amount of heat generated and the efficiency of heat dissipation.
  • Operating Time: The duration of operation also affects the thermal behavior of the fluid coupling. Continuous operation or extended duty cycles may lead to higher operating temperatures, requiring careful consideration during selection.
  • Proper Maintenance: Regular maintenance, including lubricant inspection and replacement, is crucial for optimal thermal performance. Contaminated or degraded fluid can impact the heat transfer characteristics of the coupling.

It’s essential to consider these factors when selecting a fluid coupling to ensure that it can effectively manage heat generation and maintain safe operating temperatures in the specific application.

fluid coupling

Fluid Couplings in Hydraulic Drive Systems

Yes, fluid couplings can be used in hydraulic drive systems to transmit power and control the speed of driven components. In hydraulic drive systems, fluid couplings act as a torque converter, providing a smooth and gradual transfer of power between the input and output shafts.

The basic principle of a fluid coupling remains the same whether it is used in a mechanical drive system or a hydraulic drive system. The fluid coupling consists of an input impeller connected to the prime mover (such as an electric motor or an engine) and an output runner connected to the driven component.

When the prime mover is activated, it drives the input impeller, creating a flow of hydraulic fluid within the coupling. This fluid flow creates a hydrodynamic torque that is transferred to the output runner, driving the connected component. The fluid coupling allows for a controlled slip between the input and output, allowing the driven component to start smoothly and gradually reach its desired speed.

In hydraulic drive systems, fluid couplings offer several advantages:

  • Smooth Torque Transmission: Fluid couplings provide smooth torque transmission, reducing shocks and vibrations in the system.
  • Overload Protection: Fluid couplings can protect the drive system from overloads by allowing some slip in the event of sudden changes in load or jamming of the driven component.
  • Speed Control: By controlling the flow of hydraulic fluid, the speed of the driven component can be precisely regulated.
  • Energy Efficiency: Fluid couplings can help improve energy efficiency by reducing mechanical losses and optimizing power transmission.

Hydraulic drive systems with fluid couplings are commonly used in various industrial applications, including conveyor systems, mining equipment, marine propulsion, and more. They offer reliable and efficient power transmission while protecting the machinery from excessive loads and shocks.

It’s essential to consider the specific requirements of the hydraulic drive system and the characteristics of the fluid coupling to ensure optimal performance and efficiency in the application.

fluid coupling

Selecting the Right Size of Fluid Coupling for Your Application

To ensure optimal performance and efficiency, it’s essential to choose the right size of fluid coupling for a specific application. Here are the key steps in the selection process:

  1. Identify the Application Requirements: Understand the torque and power requirements of your application. Determine the maximum torque and power that the fluid coupling needs to transmit to meet the operational demands of the machinery or equipment.
  2. Check the Speed Range: Consider the speed range of your application. Ensure that the fluid coupling can operate effectively within the desired speed range, providing adequate torque transfer across the entire speed spectrum.
  3. Consider the Fluid Coupling Type: Choose the appropriate type of fluid coupling based on the specific needs of your application. Hydrodynamic fluid couplings are suitable for applications requiring smooth and gradual torque transmission, while constant-fill fluid couplings are more suitable for applications where some slip is acceptable.
  4. Calculate the Service Factor: Determine the service factor, which accounts for any additional loads or impacts the fluid coupling may experience during operation. Multiply the maximum torque requirement by the service factor to obtain the design torque.
  5. Refer to Manufacturer Data: Consult the manufacturer’s data sheets and specifications for various fluid coupling models. Compare the design torque with the torque capacity of different fluid coupling sizes to find the most suitable match for your application.
  6. Consider Safety Margins: It’s advisable to apply safety margins to ensure reliable operation. Select a fluid coupling with a torque capacity higher than the calculated design torque to account for potential variations in load or operating conditions.
  7. Verify Space Constraints: Ensure that the selected fluid coupling fits within the available space in your machinery or equipment, considering any installation restrictions or dimensional limitations.

By following these steps and carefully evaluating the requirements of your specific application, you can select the right size of fluid coupling that will deliver optimal performance, efficiency, and reliability.

China factory Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China factory Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2023-09-27

China Best Sales Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description

 Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc CZPT Flex Rigid Drive Shaft NM yox Fluid Jaw Flexible Chain Gear Couplings

Manufacturer of Couplings, Fluid Coupling, JAW Coupling, can interchange and replacement of lovejoy coupling and so on.

A coupling can interchange and replacement of lovejoy coupling is a device used to connect 2 shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join 2 pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

 

Coupling is a jaw type coupling that works for a variety of light duty to heavy duty motors used in electric power transmission.

This is 1 of our safest types of products. The reason being that these couplings work even when the elastomer fails and there is no metal to metal contact.

They perform in well-standing oil, grease, moisture, sand, and dirt and nearly 850,000 bore combinations that can be customised as per the customer’s needs.

They are used in light-weight, medium, or heavy electrical motors and devices for power transmission through internal combustion.

Production workshop:
Company information:

disc coupling

Common Applications of Disc Couplings

Disc couplings find extensive use across various industries and applications where reliable torque transmission, misalignment compensation, and torsional stiffness are essential. Some notable examples include:

  • Industrial Machinery: Disc couplings are employed in industrial equipment such as pumps, compressors, generators, and conveyors. They ensure precise torque transfer and alignment in heavy-duty machinery.
  • Power Generation: Gas turbines, steam turbines, and power generators often utilize disc couplings to transmit torque between components while withstanding high rotational speeds.
  • Aerospace: In aircraft and spacecraft, disc couplings help connect critical systems like engines and auxiliary power units, ensuring dependable torque transmission in demanding environments.
  • Marine: Ships and offshore platforms use disc couplings to connect propulsion systems, generators, and other machinery, even in conditions with variable loads and misalignments.
  • Oil and Gas: Disc couplings play a crucial role in drilling rigs, pumps, and other equipment where reliable torque transmission and misalignment compensation are vital.
  • Automotive: Some automotive applications use disc couplings to connect components within drivetrains and transmissions, especially in vehicles with high-performance requirements.

These examples highlight the versatility and importance of disc couplings in various industries where precise torque transmission, misalignment handling, and torsional stiffness are critical for optimal performance.

disc coupling

Suitability of Disc Couplings for High-Speed Rotation and Critical Alignment

Disc couplings are well-suited for applications involving high-speed rotation and critical alignment due to their unique design and performance characteristics:

  • High-Speed Rotation: Disc couplings can handle high rotational speeds while maintaining their balance and integrity. Their lightweight and compact design minimize the effects of centrifugal forces, making them suitable for high-speed applications.
  • Critical Alignment: Disc couplings offer excellent flexibility and angular misalignment compensation. They can accommodate axial, radial, and angular misalignments, making them suitable for applications where maintaining precise alignment is crucial.
  • Torsional Stiffness: Disc couplings can provide a balance between flexibility and torsional stiffness, allowing them to transmit torque accurately even in critical alignment scenarios.
  • High Torque Capacity: Many disc couplings are designed to handle high torque loads, making them suitable for applications with demanding torque requirements.
  • Resonance Damping: The flexible nature of disc couplings can help dampen vibrations and reduce the risk of resonance, which is important in high-speed applications.

When selecting a disc coupling for high-speed rotation and critical alignment, it’s essential to consider factors such as torque requirements, speed range, misalignment compensation, space limitations, and dynamic behavior to ensure optimal performance and reliability in the specific application.

disc coupling

Challenges and Solutions for Misaligned Disc Couplings

Misalignment in disc couplings can lead to several challenges, but these issues can be effectively addressed using appropriate measures:

  • Reduced Efficiency: Misalignment can cause increased friction and wear, leading to energy losses and reduced coupling efficiency. Regular maintenance and proper alignment can help mitigate this issue.
  • Vibration and Noise: Misalignment often results in vibrations and noise in the machinery. This can impact the overall performance of the system and cause discomfort to operators. Ensuring precise alignment and using vibration-damping solutions can minimize these effects.
  • Premature Wear: Disc couplings experiencing misalignment may wear out prematurely due to uneven loading and stress concentrations. Optimal alignment and using coupling models designed to handle misalignment can extend the coupling’s lifespan.
  • Imbalanced Loads: Misalignment can lead to imbalanced loads on the coupling discs, causing uneven stress distribution. This can lead to fatigue and failure. Using spacer elements between the discs and proper alignment can distribute the loads more evenly.
  • Reduced Accuracy: In applications requiring precision positioning, misaligned disc couplings can result in inaccurate measurements or positioning. Implementing accurate alignment practices and selecting couplings designed for precise applications can mitigate this challenge.
  • Temperature Rise: Misalignment-induced friction generates heat, leading to temperature rise in the coupling and adjacent components. This can potentially affect the material properties and lead to premature wear. Proper alignment and selecting appropriate lubrication can manage temperature rise.

Addressing misalignment challenges involves a combination of careful installation, routine maintenance, alignment checks, and using coupling designs that offer flexibility and resilience to misalignment. Regular monitoring and addressing misalignment issues promptly can help ensure the longevity and optimal performance of disc couplings.

China Best Sales Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China Best Sales Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2023-09-07

China Best Sales Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description

 Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc CZPT Flex Rigid Drive Shaft NM yox Fluid Jaw Flexible Chain Gear Couplings

Manufacturer of Couplings, Fluid Coupling, JAW Coupling, can interchange and replacement of lovejoy coupling and so on.

A coupling can interchange and replacement of lovejoy coupling is a device used to connect 2 shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join 2 pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

 

Coupling is a jaw type coupling that works for a variety of light duty to heavy duty motors used in electric power transmission.

This is 1 of our safest types of products. The reason being that these couplings work even when the elastomer fails and there is no metal to metal contact.

They perform in well-standing oil, grease, moisture, sand, and dirt and nearly 850,000 bore combinations that can be customised as per the customer’s needs.

They are used in light-weight, medium, or heavy electrical motors and devices for power transmission through internal combustion.

Production workshop:
Company information:

disc coupling

Handling Torque and Torsional Stiffness in Disc Couplings

Disc couplings are engineered to handle high levels of torque and provide excellent torsional stiffness. The design of disc couplings allows them to transmit torque efficiently while maintaining their torsional rigidity. The flexible discs are designed to absorb misalignments and compensate for slight angular, axial, and radial deviations.

The discs themselves are precision-made with carefully calculated geometry, ensuring that they can transmit torque smoothly and evenly across their surface. The arrangement of multiple discs in a stack contributes to the coupling’s ability to accommodate high torque loads without sacrificing torsional stiffness.

Due to their torsionally stiff construction, disc couplings are capable of maintaining accurate shaft alignment even under significant torque transmission. This makes them suitable for applications requiring precise positioning, consistent torque transfer, and minimal backlash.

disc coupling

Impact of Number and Configuration of Disc Packs on Coupling Performance

The number and configuration of disc packs in a disc coupling have a significant impact on its overall performance. Here’s how:

  • Number of Disc Packs: Increasing the number of disc packs can enhance the coupling’s torque capacity and stiffness. This allows it to handle higher levels of torque while maintaining its flexibility to accommodate misalignment.
  • Configuration: Different configurations, such as single-flex, double-flex, or multiple-flex, offer varying degrees of angular misalignment compensation and torsional stiffness. Single-flex configurations provide greater misalignment capacity, while double-flex configurations offer improved torsional stiffness.

Choosing the appropriate number and configuration of disc packs depends on the specific application requirements:

  • Torque Transmission: Applications with high torque demands may benefit from a higher number of disc packs to ensure reliable torque transmission.
  • Misalignment Compensation: Applications with moderate misalignment may opt for configurations that offer higher angular misalignment compensation.
  • Torsional Stiffness: For applications where torsional stiffness is critical, a configuration with multiple-disc packs may be preferred.
  • Space Limitations: Consider the available space and coupling dimensions when choosing the number and configuration of disc packs.
  • Dynamic Behavior: Depending on the application’s dynamic behavior and vibration characteristics, the appropriate configuration can be selected to minimize resonances.

Ultimately, the selection of the number and configuration of disc packs in a disc coupling should be based on a thorough understanding of the application’s torque, misalignment, and stiffness requirements to optimize coupling performance and reliability.

disc coupling

Function of Disc Couplings in Torque Transmission and Misalignment Compensation

Disc couplings are designed to transmit torque between two shafts while accommodating various forms of misalignment. The primary components of a disc coupling include two hubs and a flexible disc element made of a resilient material such as stainless steel. Here’s how a disc coupling works to transmit torque and handle misalignment:

  • Torque Transmission: When torque is applied to one hub of the disc coupling, it induces angular displacement in the flexible disc. The flexible disc element bends slightly, allowing the torque to be transmitted from one hub to the other. This bending action of the disc results in an elastic deformation, which helps maintain the torque transfer.
  • Angular Misalignment Compensation: Disc couplings can accommodate angular misalignment between the two connected shafts. As the hubs are misaligned angularly, the flexible disc element compensates by bending at an angle. The disc’s flexibility and the elastic properties of the material allow it to absorb and accommodate the angular misalignment without transmitting excessive forces to the connected machinery.
  • Parallel Misalignment Compensation: In cases of parallel misalignment, where the axes of the two shafts are not perfectly aligned, the disc coupling can also absorb a certain degree of parallel offset. The flexibility of the disc allows for slight axial movement, ensuring that the hubs remain connected even when there’s a minor parallel misalignment.
  • Torsional Stiffness: While disc couplings are designed to accommodate misalignment, they also exhibit torsional stiffness. This means that under normal operating conditions, the disc coupling remains rigid enough to efficiently transmit torque between the shafts, minimizing torsional deflection and maintaining the integrity of torque transfer.

The design and material properties of the flexible disc element play a crucial role in determining the coupling’s ability to handle misalignment while transmitting torque effectively. Disc couplings are widely used in various industrial applications where torque transmission and misalignment compensation are critical requirements.

China Best Sales Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China Best Sales Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2023-09-07

China manufacturer Flexible H Couplings (Equivalent to N-EUPEX couplings) gear coupling

Product Description

SYPT H-EUPEX high flexible couplings are for shaft connection of machines,they compensate for shaft misalignment,generating only low restorative forces.

 

The torque is conducted through elastomer flexibles, so the coupling  has typically flexible rubber properties.

The flexible inserts of the H-EUPEX coupling are subjected to compression. If the flexible inserts are irreparably damaged, the hub parts  come into contact with metal. This “emergency operation capability” is required, etc., in the case of fire pump drives.
 

The motor torque is transmitted to the hub at the drive end via  the shaft-hub connection, which is mostly designed as a keyway connection. The torque is transmitted to the hub on the output  side with the aid of elastomer flexible inserts. The hub on the output  side further transmits the torque to the driven machine or a gear  unit placed in between. Because of the primarily compressionloaded  elastomer flexible inserts, the coupling has a progressive  torsional  stiffness.

 

Parts No. part1+part4

ZheJiang shine transmission machinery Co., Ltd is specialized in manufacturing and selling transmission products. Our products are exported to the world famous machinery company in Europe, America, South Africa, Australia, southeast Asia etc. 

Our main products include: European pulley, American pulley, couplings, taper bushing, qd bush, lock element, adjustable motor base, motor rail, sprockets, chain, bolt on hubs, weld on hubs, jaw crusher equipment & spare parts and all kinds of non-standard Casting products etc. 

The good quality of our products is demonstrated in various machinery equipment. For example, mining equipment, grain equipment, fan, air compressor, vacuum pump, woodworking machinery, papermaking machinery, mixing equipment etc. 

Our slogan is”qualified products win customers, good service benefits customers”. By establishing a closer cooperation with old and new clients, We’ ll be able to guarantee a CZPT situation develop and progress together.

flange coupling

Materials Used in Manufacturing Gear Couplings

Gear couplings are designed to transmit torque between shafts while accommodating misalignment. To ensure the durability and reliability of gear couplings, manufacturers use a variety of materials, each with its specific properties. Commonly used materials in manufacturing gear couplings include:

  • Steel: Steel is the most widely used material for gear couplings. It offers excellent strength, durability, and resistance to wear and fatigue. Steel gear couplings are suitable for a wide range of applications, including heavy-duty industrial machinery.
  • Stainless Steel: Stainless steel is chosen for gear couplings that require resistance to corrosion and high-temperature environments. Stainless steel couplings are commonly used in food processing, pharmaceutical, and chemical industries.
  • Alloy Steel: Alloy steel is utilized to enhance specific properties, such as increased strength and improved performance under high loads and extreme conditions. Alloy steel gear couplings are ideal for demanding applications in heavy industries.
  • Cast Iron: Cast iron is known for its excellent machinability and good resistance to wear. Cast iron gear couplings are suitable for low to moderate torque applications and can be cost-effective in certain scenarios.
  • Non-Metallic Materials: In some cases, non-metallic materials like nylon or urethane may be used for specific gear coupling applications, especially in situations where electrical isolation or chemical resistance is required.

The choice of material depends on the application’s demands, including the torque, speed, environmental conditions, and budget considerations. Gear coupling manufacturers carefully select materials that will provide optimal performance and longevity while meeting the specific requirements of the intended application.

China manufacturer Flexible H Couplings (Equivalent to N-EUPEX couplings)  gear couplingChina manufacturer Flexible H Couplings (Equivalent to N-EUPEX couplings)  gear coupling
editor by CX 2023-09-04

China factory American Type Worm Gear Drive W1 W2 Flexible Exhaust Pipe Couplings gear coupling

Product Description

Product Name

American Type Hose Clamp

Product Parameters

Item(Small American Type) Model Brand width(mm) Thickness(mm) PCS/Bag PCS/BOX
CZX-CLA-001 6-12mm 8 0.6 100 5000
CZX-CLA-002 10-16mm 8 0.6 100 5000
CZX-CLA-003 13-19mm 8 0.6 100 5000
CZX-CLA-004 16-25mm 8 0.6 100 5000
CZX-CLA-005 19-29mm 8 0.6 100 5000

Item(large American Type) Model Brand width(mm) Thickness(mm) KG/100PCS PCS/BOX
CZX-CLA-001 14-27 12 0.6 1 2000
CZX-CLA-002 18-32 12 0.6 1.3 2000
CZX-CLA-003 21-38 12 0.6 1.55 2000
CZX-CLA-004 21-44 12 0.6 1.61 2000
CZX-CLA-005 27-51 12 0.6 1.7 2000
CZX-CLA-006 33-57 12 0.6 1.8 2000
CZX-CLA-007 40-63 12 0.6 1.9 1500
CZX-CLA-008 46-70 12 0.6 2 1200
CZX-CLA-009 52-76 12 0.6 2.2 1000
CZX-CLA-571 59-82 12 0.6 2.36 1000
CZX-CLA-011 65-89 12 0.6 2.5 800
CZX-CLA-012 72-95 12 0.6 2.6 800
CZX-CLA-013 78-101 12 0.6 2.7 700
CZX-CLA-014 84-108 12 0.6 2.75 600
CZX-CLA-015 91-114 12 0.6 2.8 600
CZX-CLA-016 105-127 12 0.6 3 600
CZX-CLA-017 118-140 12 0.6 3.4 500
CZX-CLA-018 130-152 12 0.6 3.5 500
CZX-CLA-019 141-165 12 0.6 3.7 500
CZX-CLA-571 155-178 12 0.6 4 500
CZX-CLA-571 175-197 12 0.6 4.3 400
CZX-CLA-571 194-216 12 0.6 4.4 400
CZX-CLA-571 213-235 12 0.6 4.9 400
CZX-CLA-571 232-254 12 0.6 5.3 400
CZX-CLA-571 251-273 12 0.6 5.6 400
CZX-CLA-026 270-292 12 0.6 6 400
CZX-CLA-571 289-311 12 0.6 6.2 400
CZX-CLA-571 100 12 0.6    
CZX-CLA-571 200 12 0.6    
CZX-CLA-030 300 12 0.6    
CZX-CLA-031 350 12 0.6    
CZX-CLA-032 400 12 0.6    
CZX-CLA-033 450 12 0.6    
CZX-CLA-034 500 12 0.6    
CZX-CLA-035 550 12 0.6    
CZX-CLA-036 600 12 0.6    

Product name stainless steel clamp(201,304,316 is optional)
Features Exquisite workmanship, no rust
Product properties see parameter table
Product color Stainless steel color
Product material Authentic stainless steel all steel (including screws)
Product Specifications Various specifications (various sizes can be customized)
Product Usage Widely used in stainless steel, wire and cable, new energy vehicles, hoses, ships, chemicals and other industries
The hose clamp is relatively small and its value is relatively low, but the role of the hose clamp is huge. American hose clamp, also known as clamp. American stainless steel hose clamps: divided into small American hose clamps and large American hose clamps. The width of the hose clamps is 12.7mm and 14.2mm respectively. Using through-hole technology, the hose clamp has a wide range of applications. It is suitable for fasteners for connecting soft and hard pipes with a thickness of 30mm or more. The appearance after assembly is beautiful. Features: The worm has low friction, which is suitable for middle and high-end vehicles, pole-holding equipment or the connection of anti-corrosion materials.
American type hose clamp: divided into 2 types: iron galvanized and stainless steel. The main difference is that the button pitch is perforated (ie through-hole button). The market is mainly made of stainless steel, which is mainly used in high-end markets such as auto parts and poles. The price Higher than the other two.

 

Detailed Photos

Product Application

Production Workshop

International Experiance

Certifications

After Sales Service

1.Reply in 24 hours.

2.In time response and professional suggestions.

3.Replacement product and tailor-made product both can do. 

4.Small trial order accepted.

5.Certification, complete certificates,like CE, EU,Rohs, FDA.

6.Good quality and competitive price.

 

Contact Person

Celina Du
HangZhou Xihu (West Lake) Dis. Rubber & Plastic New Material Co., Ltd

flange coupling

Materials Used in Manufacturing Gear Couplings

Gear couplings are designed to transmit torque between shafts while accommodating misalignment. To ensure the durability and reliability of gear couplings, manufacturers use a variety of materials, each with its specific properties. Commonly used materials in manufacturing gear couplings include:

  • Steel: Steel is the most widely used material for gear couplings. It offers excellent strength, durability, and resistance to wear and fatigue. Steel gear couplings are suitable for a wide range of applications, including heavy-duty industrial machinery.
  • Stainless Steel: Stainless steel is chosen for gear couplings that require resistance to corrosion and high-temperature environments. Stainless steel couplings are commonly used in food processing, pharmaceutical, and chemical industries.
  • Alloy Steel: Alloy steel is utilized to enhance specific properties, such as increased strength and improved performance under high loads and extreme conditions. Alloy steel gear couplings are ideal for demanding applications in heavy industries.
  • Cast Iron: Cast iron is known for its excellent machinability and good resistance to wear. Cast iron gear couplings are suitable for low to moderate torque applications and can be cost-effective in certain scenarios.
  • Non-Metallic Materials: In some cases, non-metallic materials like nylon or urethane may be used for specific gear coupling applications, especially in situations where electrical isolation or chemical resistance is required.

The choice of material depends on the application’s demands, including the torque, speed, environmental conditions, and budget considerations. Gear coupling manufacturers carefully select materials that will provide optimal performance and longevity while meeting the specific requirements of the intended application.

China factory American Type Worm Gear Drive W1 W2 Flexible Exhaust Pipe Couplings  gear couplingChina factory American Type Worm Gear Drive W1 W2 Flexible Exhaust Pipe Couplings  gear coupling
editor by CX 2023-08-17

China supplier Stainless Steel Coupling Transmission Machined Parts Gear Roller Chain Couplings Nm Mh Flange Elastic Spider Disc Elastomeric Rigid Jaw Flexible Shaft Coupling

Product Description

Stainless Steel Coupling Transmission Parts Gear High Quality Good Price Gear Roller Chain Couplings Nm Flange Flexible Elastomeric Stainless Steel Coupling

We are the leading top Chinese coupling manufacturer, and are specializing in various high quality coupling.
1. Material: Cast iron, Rubber.
2. OEM and ODM are available
3. High efficient in transmission
4. Finishing: Painted.
5. High quality with competitive price
6. Different models suitable for your different demands
7. Stock for different bore size on both sides available.
8. Application in wide range of environment.
9. Quick and easy mounting and disassembly.
10. Resistant to oil and electrical insulation.
11. Identical clockwise and anticlockwise rotational characteristics.
12. Small dimension, low weight, high transmitted torque.

13. It has good performance on compensating the misalignment.

Fluid couplings:

Features:

Improve the starting capability of electric motor, protect motor against overloading, damp shock, load

fluctuation and torsional vibration, and balance and load distribution in case of multimotor drives.

Applications:

Belt conveyers, csraper conveyers, and conveyers of all kinds Bucket elevators, ball mills, hoisters, crushers,

excavators, mixers, straighteners, cranes, etc.

Flange Flexible Coupling:

Flexible Coupling Model is widely used for its compact designing,easy installation,convenientmaintenance,small size and

light weight.As long as the’relative displacement between shafts is kept within the specified tolerance,the coupling will

operate the best function and a longer working life,thus it is greatly demanded in medium and minorpower transmission

systems drive by moters,such as speed reducers,hoists,compressor,spining &weaving machines and ball mills,permittable

relative displacement:Radial displacement 0.2-0.6mm ; Angel displacemente 0o 30′–1o 30′
 

Jaw Couplings:

Click here for more types of couplings

 

Our Services:

1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2.Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

Company Information:

 

 

 

 

elastomeric coupling

Potential Causes of Failure in Elastomeric Couplings and Preventive Measures

Elastomeric couplings are generally robust and reliable components, but certain factors can lead to potential failures. Understanding these causes can help implement preventive measures to ensure optimal performance and longevity. Here are some common causes of failure and their prevention:

1. Overloading:

Exceeding the specified torque or power ratings of the elastomeric coupling can lead to premature failure. Preventive measures include selecting a coupling with appropriate torque and power ratings for the application and avoiding sudden load increases or over-torque conditions.

2. Misalignment:

Misalignment between the shafts connected by the coupling can result in increased stresses on the elastomeric element, leading to wear and failure. Regular alignment checks and adjustments can help prevent excessive misalignment.

3. Environmental Factors:

Harsh environmental conditions, such as extreme temperatures, chemicals, moisture, or corrosive substances, can degrade the elastomeric material over time. Choosing couplings with suitable materials and environmental protection can mitigate these effects.

4. Fatigue and Ageing:

Elastomeric materials can experience fatigue and aging due to cyclic loading and prolonged use. Regular inspection and replacement of couplings based on manufacturer recommendations can prevent failures caused by material deterioration.

5. Improper Installation:

Incorrect installation can lead to stress concentrations or uneven loads on the coupling, causing premature failure. Proper installation procedures, including following manufacturer guidelines, using appropriate tools, and ensuring proper shaft alignment, are essential to prevent installation-related issues.

6. Excessive Vibrations:

Excessive vibrations in the machinery can accelerate wear on the elastomeric coupling. Addressing the root causes of excessive vibrations, such as unbalanced loads or misaligned components, can help extend the coupling’s lifespan.

7. Contaminants:

Foreign particles, dirt, or debris can infiltrate the coupling and lead to abrasive wear or reduced flexibility. Regular cleaning and maintenance can prevent these issues.

8. Poor Maintenance:

Lack of routine inspection and maintenance can allow minor issues to escalate into major problems. Implementing a maintenance schedule that includes regular inspections, lubrication, and replacement of worn components can help identify and address potential failures before they occur.

By proactively addressing these potential failure causes, industrial operators can ensure reliable and efficient performance of elastomeric couplings, minimizing downtime, and reducing maintenance costs in the long run.

elastomeric coupling

Common Industries Where Elastomeric Couplings Find Significant Usage

Elastomeric couplings are versatile components widely used in various industries to facilitate efficient power transmission and protect machinery from torsional vibrations and misalignments. Some of the common industries where elastomeric couplings find significant usage include:

1. Manufacturing and Industrial Machinery:

Elastomeric couplings are commonly employed in manufacturing machinery such as conveyor systems, pumps, compressors, mixers, and machine tools. They help connect the motor and driven equipment, providing smooth power transmission and reducing vibrations.

2. Automotive:

In the automotive industry, elastomeric couplings are used in drivetrain systems, including propeller shafts, steering systems, and powertrain components. They offer excellent damping characteristics to absorb vibrations and shocks during vehicle operation.

3. Aerospace and Defense:

Elastomeric couplings play a crucial role in aerospace and defense applications, where lightweight and reliable power transmission is essential. They are used in aircraft engines, rotor systems, missile guidance systems, and various other aerospace components.

4. Energy and Power Generation:

Elastomeric couplings are used in power generation plants, including thermal, hydroelectric, and wind power plants. They connect generators to turbines and help absorb torsional vibrations, ensuring stable and efficient power transmission.

5. Oil and Gas:

In the oil and gas industry, elastomeric couplings are used in various equipment, such as pumps, compressors, and drilling rigs. They provide reliable power transmission and help protect the equipment from dynamic loads and vibrations.

6. Mining and Construction:

Elastomeric couplings are commonly found in mining and construction machinery, such as crushers, excavators, and conveyor systems. They enable efficient power transfer and help withstand heavy loads and harsh operating conditions.

7. Marine:

In marine applications, elastomeric couplings are used in propulsion systems and marine pumps. They offer excellent resistance to seawater and provide reliable power transmission in marine vessels.

8. Renewable Energy:

In the renewable energy sector, elastomeric couplings are used in wind turbines and solar tracking systems. They help adjust the alignment between the components and absorb wind and solar-induced dynamic loads.

Elastomeric couplings’ ability to dampen vibrations, compensate for misalignments, and provide flexibility makes them suitable for a wide range of industrial applications. Their widespread usage across diverse industries highlights their importance in enhancing equipment reliability, reducing maintenance costs, and improving overall operational efficiency.

elastomeric coupling

Maintenance Requirements for Elastomeric Couplings to Ensure Optimal Performance and Longevity

Elastomeric couplings are known for their relatively low maintenance requirements, but regular inspection and care are essential to ensure their optimal performance and longevity. Here are the key maintenance practices for elastomeric couplings:

1. Visual Inspection:

Regularly inspect the coupling for signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric element and any visible signs of deterioration.

2. Lubrication:

Most elastomeric couplings do not require lubrication, as the elastomeric material acts as a self-lubricating element. However, check with the manufacturer’s recommendations to ensure your specific coupling type does not require any lubrication.

3. Misalignment Check:

Monitor the misalignment between the connected shafts to ensure it stays within the coupling’s allowable limits. Excessive misalignment can lead to premature wear and reduced coupling life.

4. Temperature Limits:

Keep the operating temperature within the specified limits for the elastomeric material. Extreme temperatures can degrade the elastomer and affect its flexibility and performance.

5. Environmental Protection:

Protect the coupling from exposure to chemicals, abrasive particles, and other harsh environmental elements that may accelerate wear and deterioration of the elastomeric material.

6. Regular Maintenance Schedule:

Follow a maintenance schedule recommended by the manufacturer or based on the specific operating conditions of your application. Regularly inspect and replace elastomeric couplings as needed to prevent unexpected failures.

7. Proper Installation:

Ensure the coupling is correctly installed following the manufacturer’s guidelines. Proper installation helps maintain the coupling’s alignment and prevents undue stresses on the elastomeric element.

8. Load Monitoring:

Regularly monitor the load and torque requirements of your application. Avoid overloading the coupling beyond its specified capacity, as this can lead to premature failure.

By following these maintenance practices, you can extend the life of your elastomeric couplings and ensure they continue to provide reliable and efficient power transmission in your industrial system. Remember that each application may have specific maintenance needs, so always refer to the manufacturer’s instructions and consult with experts if needed.

China supplier Stainless Steel Coupling Transmission Machined Parts Gear Roller Chain Couplings Nm Mh Flange Elastic Spider Disc Elastomeric Rigid Jaw Flexible Shaft Coupling  China supplier Stainless Steel Coupling Transmission Machined Parts Gear Roller Chain Couplings Nm Mh Flange Elastic Spider Disc Elastomeric Rigid Jaw Flexible Shaft Coupling
editor by CX 2023-08-07