Tag Archives: drive shaft coupling

China Best Sales Mechanical Power Transmission Drive Parts Components Connection Pump Rubber Coupler Manufacturer Motor Shaft Universal Coupling

Product Description

Stainless Steel Gear Roller Chain Mechanical Power Transmission Drive Parts Components Connection Tyre Grid Jaw Spider Fan Pump Rubber Coupler Manufacturer Round Motor Shaft Price Universal Joint Coupling

Features

 

1. Compact designing, easy installation.
2. Convenient maintenance, small size, and lightweight.
3. Absorb the transmission of impact load.
4. Prevent overload.

We can provide the following couplings:

Rigid coupling Flange coupling Oldham coupling
Chain Coupling HRC Coupling Jaw Coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Spacer Coupling Nm Coupling MH Coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Product Description

SIZE N.m r/min
 
D D1 d1 L C n-M kg
FCL90 4 4000 90 35.5 11 28 3 4-M8 1.7
FCL100 10 4000 100 40 11 35.5 3 4-M10 2.3
FCL112 16 4000 112 45 13 40 3 4-M10 2.8
FCL125 25 4000 125 65 50 13 45 3 4-M12 4
FCL140 50 4000 140 71 63 13 50 3 6-M12 5.4
FCL160 110 4000 160 80 15 56 3 8-M12 8
FCL180 157 3500 180 90 15 63 3 8-M12 10.5
FCL200 245 3200 200 100 21 71 4 8-M20 16.2
FCL224 392 2850 224 112 21 80 4 8-M20 21.3
FCL250 618 2550 250 125 25 90 4 8-M24 31.6
FCL280 980 2300 280 140 34 100 4 8-M24 44
FCL315 1568 2050 315 160 41 112 4 10-M24 57.7
FCL355 2450 1800 355 180 60 125 5 8-M30 89.5
FCL400 3920 1600 400 200 60 125 5 10-M30 113
FCL450 6174 1400 450 224 65 140 5 12-M30 145
FCL560 9800 1150 560 250 85 160 5 14-M30 229
FCL630 15680 1000 630 280 95 180 5 18-M30 296

 

Related Products

 

 

Company Profile

FAQ

Q: How to ship the coupling to us?
A: It is available by air, sea, or train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

fluid coupling

Fluid Couplings in Marine Propulsion Systems

Yes, fluid couplings can be and are commonly used in marine propulsion systems. They offer several advantages that make them well-suited for such applications:

  • Smooth Power Transmission: Fluid couplings provide smooth power transmission, which is beneficial for marine propulsion where abrupt changes in power delivery can be detrimental to the vessel’s stability and performance.
  • Torque Limiting: In marine applications, fluid couplings can act as torque limiters, protecting the propulsion system and engine from sudden torque surges and overloads, which can occur during maneuvers or when encountering resistance in water.
  • Impact Damping: The hydrodynamic principle of fluid couplings helps dampen impacts and shocks in the propulsion system, reducing wear and tear on the components and extending their lifespan.
  • Load Sharing: In multi-engine marine setups, fluid couplings facilitate load sharing between engines, ensuring each engine contributes its share of power to achieve optimal propulsion efficiency.
  • Start-up Performance: Fluid couplings enable controlled and gradual acceleration during start-up, which is crucial for large vessels and applications where sudden torque spikes could damage the drivetrain or disturb the vessel’s balance.
  • Overload Protection: The fluid coupling’s ability to slip at high loads provides inherent overload protection to the marine propulsion system, safeguarding it against potential damage.

Fluid couplings used in marine applications are specially designed to withstand the harsh conditions of the marine environment, including exposure to saltwater, humidity, and vibration. They are available in various sizes and configurations to accommodate different marine vessel types and power requirements.

Overall, fluid couplings offer reliable and efficient power transmission solutions for marine propulsion systems, contributing to the safe and smooth operation of the vessel.

fluid coupling

Role of Fluid Coupling in Torque Multiplication and Power Transfer

A fluid coupling is a mechanical device used to transmit power between two shafts without direct physical contact. It operates on the principles of fluid dynamics and hydrokinetics to enable torque multiplication and efficient power transfer. Here’s how a fluid coupling achieves these functions:

  • Hydrodynamic Torque Converter: A fluid coupling is essentially a hydrodynamic torque converter. When the input shaft (driving shaft) rotates, it sets the transmission fluid inside the coupling in motion. The fluid experiences centrifugal forces, creating a high-velocity zone near the outer circumference and a low-velocity zone near the center. This velocity difference generates torque in the fluid coupling, allowing power to be transmitted from the input shaft to the output shaft (driven shaft).
  • Torque Multiplication: One of the primary advantages of a fluid coupling is its ability to provide torque multiplication. During startup or when the load on the driven shaft is initially low, the fluid coupling slips to some extent, which allows the input shaft to rotate at a higher speed than the output shaft. This speed difference results in torque multiplication, enabling the fluid coupling to handle higher loads during acceleration or heavy starting conditions.
  • Power Transfer Efficiency: Fluid couplings offer high power transfer efficiency due to the hydrodynamic nature of their operation. The smooth and continuous transmission of power through the fluid medium minimizes energy losses and mechanical wear, leading to more efficient power transmission compared to mechanical clutches or direct-coupling methods.
  • Load Adaptability: Fluid couplings automatically adjust their slip to adapt to changing load conditions. When the load on the output shaft increases, the fluid coupling slips more, allowing the output shaft to slow down slightly and match the load demand. This load adaptability ensures smooth and stable power transfer even under varying operating conditions.

Fluid couplings are commonly used in applications where torque multiplication and smooth power transfer are essential. They find widespread use in heavy machinery, mining equipment, conveyors, crushers, marine propulsion systems, and many other industrial applications. By efficiently transferring power while providing torque multiplication, fluid couplings help optimize the performance and longevity of power transmission systems.

Proper selection of the fluid coupling based on the application’s torque and power requirements is crucial to ensure optimal torque multiplication and power transfer. Additionally, regular maintenance and monitoring of the fluid coupling’s condition are essential to maintain its efficiency and reliability over time.

fluid coupling

Principle of Hydrodynamic Fluid Coupling

A hydrodynamic fluid coupling operates on the principle of hydrokinetics, utilizing hydraulic fluid to transmit power between an engine or prime mover and a driven load. The key components of a fluid coupling are the impeller, the turbine, and the housing filled with hydraulic fluid.

Here’s how the principle works:

  1. Impeller: The impeller is connected to the engine’s crankshaft and is responsible for driving the hydraulic fluid. As the impeller rotates, it creates a flow of fluid within the housing.
  2. Fluid Flow: The rotational motion of the impeller causes the fluid to move radially outward, towards the housing walls. This generates a high-velocity fluid flow in the housing.
  3. Turbine: The turbine is connected to the driven load, such as a transmission or machinery input shaft. As the fluid flows onto the blades of the turbine, it causes the turbine to rotate.
  4. Power Transmission: The kinetic energy of the high-velocity fluid is transferred to the turbine, resulting in the rotation of the driven load. The power transmission is achieved purely through the hydrodynamic effect of the fluid flow.
  5. Slip: In a fluid coupling, there is always a slight difference in speed (slip) between the impeller and the turbine. This slip is necessary to allow the fluid to accelerate from rest to the speed of the turbine. As a result, the output speed of the driven load is always slightly less than the input speed from the engine.

Hydrodynamic fluid couplings provide several advantages, such as smooth power transmission, overload protection, and torsional vibration dampening. However, they do not provide torque multiplication like torque converters do, making them more suitable for applications where precise speed matching is required.

China Best Sales Mechanical Power Transmission Drive Parts Components Connection Pump Rubber Coupler Manufacturer Motor Shaft Universal Coupling  China Best Sales Mechanical Power Transmission Drive Parts Components Connection Pump Rubber Coupler Manufacturer Motor Shaft Universal Coupling
editor by CX 2023-10-23

China Professional Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description

 Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc CHINAMFG Flex Rigid Drive Shaft NM yox Fluid Jaw Flexible Chain Gear Couplings

Manufacturer of Couplings, Fluid Coupling, JAW Coupling, can interchange and replacement of lovejoy coupling and so on.

A coupling can interchange and replacement of lovejoy coupling is a device used to connect 2 shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join 2 pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

 

Coupling is a jaw type coupling that works for a variety of light duty to heavy duty motors used in electric power transmission.

This is 1 of our safest types of products. The reason being that these couplings work even when the elastomer fails and there is no metal to metal contact.

They perform in well-standing oil, grease, moisture, sand, and dirt and nearly 850,000 bore combinations that can be customised as per the customer’s needs.

They are used in light-weight, medium, or heavy electrical motors and devices for power transmission through internal combustion.

Production workshop:
Company information:

disc coupling

Comparison of Disc Couplings with Other Coupling Types

When comparing disc couplings with other coupling types like jaw couplings and elastomeric couplings, several factors come into play:

  • Flexibility: Disc couplings offer high flexibility and misalignment compensation, similar to elastomeric couplings, making them suitable for applications with angular, axial, and parallel misalignment.
  • Torsional Stiffness: Jaw couplings are known for their high torsional stiffness, which is suitable for precision applications. Disc couplings offer a balance between flexibility and stiffness.
  • Misalignment Compensation: Disc couplings excel in accommodating misalignment, whereas elastomeric couplings and jaw couplings are better suited for lower degrees of misalignment.
  • Vibration Damping: Elastomeric couplings provide excellent vibration damping due to their rubber elements. Disc couplings can also dampen vibrations to some extent.
  • Compactness: Jaw couplings and elastomeric couplings are relatively compact, making them suitable for space-constrained applications. Disc couplings are larger in size but offer higher torque capacity.
  • Torque Capacity: Disc couplings generally have higher torque capacity compared to elastomeric couplings and jaw couplings.
  • Installation and Maintenance: Disc couplings and elastomeric couplings are typically easier to install and require less maintenance compared to jaw couplings.
  • Material Options: All three coupling types are available in various materials, allowing for compatibility with different environments.

The choice between disc couplings, jaw couplings, and elastomeric couplings depends on the specific requirements of the application, including torque, misalignment, vibration, and stiffness considerations. Each coupling type has its strengths, and selecting the right one involves evaluating these factors to achieve optimal performance and reliability.

disc coupling

Maintaining and Extending the Lifespan of Disc Couplings

Proper maintenance is crucial to ensure the longevity and reliable performance of disc couplings. Here are the best practices:

  1. Regular Inspections: Conduct visual inspections to identify signs of wear, corrosion, or damage. Regular checks help detect issues early.
  2. Lubrication: Follow manufacturer recommendations for lubrication intervals and use the appropriate lubricants. Proper lubrication reduces friction and wear between disc elements.
  3. Alignment: Ensure proper alignment of the coupling and connected shafts. Misalignment can lead to premature wear and decreased coupling efficiency.
  4. Torque Monitoring: Monitor torque levels and load variations to identify abnormal fluctuations. Address sudden changes promptly to prevent further damage.
  5. Vibration Analysis: Use vibration analysis tools to detect and mitigate excessive vibration. Vibration can accelerate wear and affect machinery performance.
  6. Temperature Management: Monitor operating temperatures to avoid overheating. Excessive heat can lead to premature wear and material degradation.
  7. Load Consideration: Ensure the coupling is not subjected to loads beyond its capacity. Overloading can lead to accelerated wear and potential failure.
  8. Environmental Factors: Protect the coupling from contaminants, moisture, and corrosive substances that can accelerate deterioration.
  9. Timely Repairs: Address any identified issues promptly. Replace worn or damaged components to prevent further degradation.
  10. Professional Assistance: If you encounter complex issues, consider involving experienced technicians or engineers for diagnosis and repair.

Following these practices helps maintain optimal performance, extend the lifespan of disc couplings, and contribute to the overall efficiency and reliability of machinery systems.

disc coupling

Disc Couplings: Function and Application in Mechanical Systems

A disc coupling is a type of flexible coupling used in mechanical systems to connect two shafts while allowing for angular misalignment, axial movement, and some degree of torsional flexibility. It consists of two hubs with flexible metallic discs, known as diaphragms, positioned between them.

Disc couplings are commonly utilized in various industrial applications where precise power transmission, reliability, and flexibility are essential. Some key features and applications of disc couplings include:

  • High Torque Transmission: Disc couplings are designed to transmit high torque loads between shafts while maintaining shaft alignment. The flexible diaphragms can accommodate misalignments and prevent torque overloads on connected equipment.
  • Angular Misalignment Compensation: The design of disc couplings allows them to handle angular misalignment between shafts, which can occur due to manufacturing tolerances or dynamic conditions.
  • Axial Movement Absorption: Disc couplings can absorb limited axial movement along the shaft axis without transferring excessive forces to the connected components.
  • Torsional Flexibility: The metallic diaphragms of disc couplings offer torsional flexibility, enabling them to dampen vibrations and shock loads. This helps protect connected equipment from damage and increases overall system reliability.
  • Precision Machinery: Disc couplings are often employed in precision machinery and equipment, such as CNC machines, robotics, pumps, compressors, and servo systems. These applications require accurate motion control and reliable power transmission.
  • High-Speed Applications: Due to their balanced design and ability to maintain precise alignment, disc couplings are suitable for high-speed applications where even a small misalignment can lead to vibration and wear.

The ability of disc couplings to provide both flexibility and precise torque transmission makes them a preferred choice in various industries, including manufacturing, aerospace, automotive, and more. Proper selection, installation, and maintenance of disc couplings contribute to improved machinery performance, reduced downtime, and extended component life.

China Professional Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China Professional Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2023-10-16

China Standard Mechanical Coupling Shaft Elastomeric Stainless Steel Clamp Industrial Servo Flange Flexible Square Shaft Industrial Hydraulic Fluid Drive Roller Chain Spider

Product Description

Mechanical Coupling Shaft Elastomeric Stainless Steel Clamp Industrial Servo Flange Flexible Square Shaft Industrial Hydraulic Fluid Drive Roller Chain Spider

elastomeric coupling

Potential Causes of Failure in Elastomeric Couplings and Preventive Measures

Elastomeric couplings are generally robust and reliable components, but certain factors can lead to potential failures. Understanding these causes can help implement preventive measures to ensure optimal performance and longevity. Here are some common causes of failure and their prevention:

1. Overloading:

Exceeding the specified torque or power ratings of the elastomeric coupling can lead to premature failure. Preventive measures include selecting a coupling with appropriate torque and power ratings for the application and avoiding sudden load increases or over-torque conditions.

2. Misalignment:

Misalignment between the shafts connected by the coupling can result in increased stresses on the elastomeric element, leading to wear and failure. Regular alignment checks and adjustments can help prevent excessive misalignment.

3. Environmental Factors:

Harsh environmental conditions, such as extreme temperatures, chemicals, moisture, or corrosive substances, can degrade the elastomeric material over time. Choosing couplings with suitable materials and environmental protection can mitigate these effects.

4. Fatigue and Ageing:

Elastomeric materials can experience fatigue and aging due to cyclic loading and prolonged use. Regular inspection and replacement of couplings based on manufacturer recommendations can prevent failures caused by material deterioration.

5. Improper Installation:

Incorrect installation can lead to stress concentrations or uneven loads on the coupling, causing premature failure. Proper installation procedures, including following manufacturer guidelines, using appropriate tools, and ensuring proper shaft alignment, are essential to prevent installation-related issues.

6. Excessive Vibrations:

Excessive vibrations in the machinery can accelerate wear on the elastomeric coupling. Addressing the root causes of excessive vibrations, such as unbalanced loads or misaligned components, can help extend the coupling’s lifespan.

7. Contaminants:

Foreign particles, dirt, or debris can infiltrate the coupling and lead to abrasive wear or reduced flexibility. Regular cleaning and maintenance can prevent these issues.

8. Poor Maintenance:

Lack of routine inspection and maintenance can allow minor issues to escalate into major problems. Implementing a maintenance schedule that includes regular inspections, lubrication, and replacement of worn components can help identify and address potential failures before they occur.

By proactively addressing these potential failure causes, industrial operators can ensure reliable and efficient performance of elastomeric couplings, minimizing downtime, and reducing maintenance costs in the long run.

elastomeric coupling

Impact of Temperature Variation on Elastomeric Coupling Performance

Temperature variation can significantly affect the performance of elastomeric couplings due to the properties of the elastomeric material used in their construction. Here are the key ways temperature variation can influence coupling performance:

1. Elasticity and Flexibility:

Elastomeric materials exhibit changes in their elasticity and flexibility with temperature. At lower temperatures, the elastomer may become stiffer, reducing its ability to compensate for misalignments and absorb vibrations. Conversely, at higher temperatures, the elastomer may become softer, affecting the coupling’s torsional stiffness and load-carrying capacity.

2. Damping Characteristics:

Temperature changes can impact the damping characteristics of the elastomer. Elastomeric couplings rely on the damping properties of the material to absorb vibrations and shocks. Temperature-related variations can alter the material’s ability to dampen vibrations, affecting the coupling’s performance in reducing dynamic loads.

3. Wear and Degradation:

Elastomeric materials can undergo wear and degradation with temperature fluctuations. Excessive heat can accelerate the aging process of the elastomer, leading to material hardening, cracking, and reduced service life. Extreme temperature conditions may also cause the elastomer to soften and lose its structural integrity.

4. Tolerance to High Temperatures:

Some elastomeric couplings are designed to withstand higher temperatures than others. Extreme heat can cause traditional elastomeric materials to exceed their temperature limits, leading to failure or reduced performance. Specialized high-temperature elastomers or alternative materials may be required for applications operating in elevated temperature environments.

5. Torque and Power Ratings:

Temperature changes can influence the torque and power ratings of the elastomeric coupling. It is essential to consider the temperature variation when selecting a coupling for a specific application to ensure that it can handle the expected loads safely and reliably.

6. Environmental Conditions:

Elastomeric couplings operating in extreme temperature environments may also encounter other environmental factors like humidity, chemicals, and exposure to harsh substances, which can further impact the material properties and coupling performance.

To mitigate the effects of temperature variation on elastomeric coupling performance, it is crucial to select a coupling with suitable elastomeric material capable of withstanding the expected temperature range. Regular maintenance, periodic inspection, and adherence to the manufacturer’s temperature limits and guidelines will help ensure optimal performance and prolong the lifespan of the coupling in temperature-varying operating conditions.

elastomeric coupling

Advantages of Using Elastomeric Couplings in Industrial Applications

Elastomeric couplings offer several advantages that make them well-suited for various industrial applications. These advantages stem from their flexible design and the use of elastomeric materials like rubber or polyurethane. Below are the key benefits of using elastomeric couplings:

1. Misalignment Compensation:

Elastomeric couplings can tolerate and compensate for angular, parallel, and axial misalignments between connected shafts. This ability to handle misalignment reduces stress on equipment and extends the lifespan of both the coupling and the connected machinery.

2. Vibration and Shock Absorption:

The elastomeric material in the coupling acts as a natural vibration isolator, absorbing shocks and dampening vibrations. This feature is essential for reducing noise, protecting sensitive components, and enhancing the overall smoothness of operation in industrial systems.

3. No Lubrication Required:

Elastomeric couplings do not need regular lubrication, making them low-maintenance solutions for many industrial applications. This reduces the time and effort spent on maintenance tasks and minimizes the risk of contamination or leakage in certain environments.

4. Cost-Effectiveness:

Compared to some other types of couplings, elastomeric couplings are generally more cost-effective. Their simple construction and use of elastomeric materials make them affordable choices for power transmission in various industries.

5. Electrically Insulating:

Elastomeric couplings are electrically insulating, which can be advantageous in applications where electrical isolation is necessary to prevent current flow between shafts or connected equipment.

6. Fail-Safe Design:

In the event of elastomeric material failure, elastomeric couplings have a fail-safe design that allows them to continue transmitting torque, albeit with some reduction in performance. This feature ensures continued operation and prevents sudden catastrophic failures.

7. Easy Installation:

Elastomeric couplings are relatively simple to install, saving time and effort during the setup of industrial machinery.

8. Diverse Industrial Applications:

Elastomeric couplings find use in various industrial applications, including pumps, compressors, conveyor systems, machine tools, blowers, fans, and more.

Due to their ability to handle misalignment, provide vibration dampening, and require minimal maintenance, elastomeric couplings are widely utilized in industrial settings where reliability, efficiency, and cost-effectiveness are critical considerations.

China Standard Mechanical Coupling Shaft Elastomeric Stainless Steel Clamp Industrial Servo Flange Flexible Square Shaft Industrial Hydraulic Fluid Drive Roller Chain Spider  China Standard Mechanical Coupling Shaft Elastomeric Stainless Steel Clamp Industrial Servo Flange Flexible Square Shaft Industrial Hydraulic Fluid Drive Roller Chain Spider
editor by CX 2023-10-09

China Best Sales Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

Product Description

Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric flexible gear Coupling

Application of Shaft Chain Coupling

A shaft chain coupling is a type of coupling that is used to connect 2 shafts that are not perfectly aligned. The coupling consists of a chain that is connected to 2 sprockets, 1 on each shaft. The chain allows the shafts to move slightly relative to each other, which helps to compensate for misalignment.

Shaft chain couplings are used in a wide variety of applications, including:

  • Conveyors: Shaft chain couplings are used in conveyors to transmit power from the motor to the conveyor belt.
  • Pumps: Shaft chain couplings are used in pumps to transmit power from the motor to the pump shaft.
  • Fans: Shaft chain couplings are used in fans to transmit power from the motor to the fan shaft.
  • Generators: Shaft chain couplings are used in generators to transmit power from the turbine to the generator rotor.
  • Wind turbines: Shaft chain couplings are used in wind turbines to transmit power from the turbine to the generator rotor.

Shaft chain couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, including:

  • Can compensate for misalignment: Shaft chain couplings can compensate for misalignment up to 2 degrees. This makes them ideal for applications where the shafts are not perfectly aligned, such as when the equipment is installed in a new location or when the equipment is subject to vibration.
  • Easy to install: Shaft chain couplings are easy to install and maintain. They can be installed without special tools or training.
  • Available in a variety of sizes and styles: Shaft chain couplings are available in a variety of sizes and styles to meet the needs of different applications. This makes it easy to find a coupling that is the right size and style for your application.
  • Highly efficient: Shaft chain couplings are highly efficient, meaning that they transmit a large percentage of the power from the driving shaft to the driven shaft. This can save money on energy costs.
  • Durable: Shaft chain couplings are durable and can withstand a wide range of operating conditions.

Here are some of the disadvantages of using shaft chain couplings:

  • Cost: Shaft chain couplings can be more expensive than other types of couplings.
  • Maintenance: Shaft chain couplings require periodic maintenance, such as checking the coupling for wear and tear and lubricating the chain as needed.

Overall, shaft chain couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, but they also have some disadvantages. The best type of coupling for a particular application will depend on the specific requirements of that application.

elastomeric coupling

Real-World Applications and Success Stories of Elastomeric Couplings in Challenging Environments

Elastomeric couplings have demonstrated their effectiveness and reliability in numerous challenging industrial environments. Here are some real-world applications and success stories:

1. Wind Turbines:

Elastomeric couplings are commonly used in wind turbines to connect the gearbox to the generator. The couplings accommodate misalignments caused by wind-induced movements and thermal variations, ensuring efficient power transmission even in harsh wind farm conditions.

2. Steel Mills:

In steel mills, elastomeric couplings are employed in rolling mills and conveyor systems. These couplings dampen vibrations generated during the rolling process, protecting the machinery and reducing maintenance costs.

3. Marine Propulsion:

In marine applications, elastomeric couplings connect the engine to the propeller shaft, accommodating shaft misalignments caused by hull flexing and propeller thrust. The couplings’ shock-absorbing properties protect the drivetrain from sudden load changes and contribute to smooth and efficient propulsion.

4. Mining Equipment:

In mining operations, elastomeric couplings are used in crushers, conveyors, and other equipment. They handle misalignments caused by uneven terrain and reduce shock loads during the crushing and conveying processes, increasing equipment durability and uptime.

5. Chemical Processing:

Elastomeric couplings find application in chemical processing equipment that handles corrosive substances and operates at varying temperatures. The couplings’ resistance to chemicals and ability to accommodate thermal expansion contribute to reliable and efficient performance in these harsh environments.

6. Offshore Oil & Gas Platforms:

In offshore platforms, elastomeric couplings connect pumps, compressors, and generators, allowing them to handle misalignments caused by platform movement and temperature fluctuations. The couplings’ ability to dampen vibrations and absorb shock loads enhances equipment longevity and safety.

7. Power Generation:

In power plants, elastomeric couplings are used in gas turbines, steam turbines, and other power generation equipment. They dampen torsional vibrations and compensate for thermal growth, contributing to efficient power production and reduced maintenance costs.

8. Paper and Pulp Industry:

In paper and pulp mills, elastomeric couplings connect the motors to the rollers and conveyors. The couplings’ flexibility and shock-absorbing properties protect the machinery from sudden load changes, leading to smoother operations and increased productivity.

These real-world success stories showcase how elastomeric couplings excel in challenging environments, delivering reliable and efficient performance across various industries. Their ability to handle misalignments, dampen vibrations, and absorb shocks makes them a valuable component in demanding industrial applications.

elastomeric coupling

Standard Specifications and Industry Norms for Elastomeric Couplings

Yes, there are standard specifications and industry norms that govern the design, manufacturing, and performance of elastomeric couplings. These standards ensure that elastomeric couplings meet specific criteria for quality, reliability, and safety. Some of the widely recognized standards and norms for elastomeric couplings include:

1. American National Standards Institute (ANSI):

ANSI provides standards and guidelines for elastomeric couplings used in various industrial applications. ANSI standards cover design considerations, dimensions, materials, torque ratings, and performance testing for elastomeric couplings.

2. International Organization for Standardization (ISO):

ISO develops international standards for elastomeric couplings, ensuring consistency and interoperability across different regions and industries. ISO standards cover coupling performance, dimensions, and testing methods.

3. American Society of Mechanical Engineers (ASME):

ASME standards include guidelines for elastomeric couplings, providing information on design, installation, maintenance, and inspection practices to ensure safe and reliable operation.

4. American Gear Manufacturers Association (AGMA):

AGMA publishes standards related to elastomeric couplings used in power transmission systems. These standards cover coupling design, selection, application, and maintenance guidelines.

5. European Committee for Standardization (CEN):

CEN develops European standards for elastomeric couplings to promote uniformity and compliance across European countries.

Manufacturers often use these standards as a reference when designing and testing elastomeric couplings. Compliance with these standards helps ensure that the couplings meet minimum quality and performance requirements. Additionally, many industries have specific regulations and norms related to safety, which elastomeric couplings must adhere to when used in their applications.

When selecting an elastomeric coupling, it is essential to verify if it complies with the relevant standards and industry norms to guarantee its suitability and safety for your specific application. Manufacturers typically provide documentation stating the compliance of their couplings with the applicable standards.

elastomeric coupling

Limitations and Drawbacks of Using Elastomeric Couplings in Specific Scenarios

While elastomeric couplings offer several advantages, they may not be the ideal choice for every scenario. There are some limitations and drawbacks to consider, particularly in specific industrial applications. Here are some key points to be aware of:

1. Torque Capacity:

Elastomeric couplings may have limitations in handling high torque levels. In heavy-duty applications with significant torque requirements, a different type of coupling, such as a gear coupling or grid coupling, might be more suitable.

2. Temperature Range:

Elastomeric materials have temperature limitations. In environments with extreme temperatures, such as high-temperature industrial processes or cryogenic applications, elastomeric couplings may degrade or lose their flexibility, affecting their performance and lifespan.

3. Chemical Compatibility:

Some chemicals or aggressive substances may degrade the elastomeric material used in the coupling. In such cases, alternative coupling materials, like stainless steel or special coatings, should be considered.

4. High-Speed Applications:

In applications with high rotational speeds, elastomeric couplings might experience dynamic issues like resonance or flutter, which can lead to premature wear or failure. High-speed applications often require specialized couplings, such as disc couplings or diaphragm couplings.

5. Stiffness and Torsional Rigidity:

For applications requiring precise motion control or minimal angular deflection, elastomeric couplings might not provide the necessary stiffness or torsional rigidity. In such cases, rigid couplings or precision couplings are better suited.

6. Axial Load Handling:

Elastomeric couplings are primarily designed for torque transmission and misalignment compensation. They may not be suitable for handling significant axial loads between connected shafts.

7. Maintenance in Harsh Environments:

In environments with abrasive particles, high humidity, or other harsh conditions, elastomeric couplings might require more frequent maintenance to prevent premature wear.

8. Space Limitations:

Due to their flexible design, elastomeric couplings might require more space compared to some other coupling types. In compact or space-constrained applications, alternative couplings with more compact designs might be preferred.

Despite these limitations, elastomeric couplings remain highly versatile and effective in numerous industrial applications. However, it’s crucial to carefully consider the specific requirements and operating conditions of each application to determine whether an elastomeric coupling is the best choice or if an alternative coupling type might be more suitable.

China Best Sales Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling  China Best Sales Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling
editor by CX 2023-10-08

China factory Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

Product Description

Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric flexible gear Coupling

Application of Shaft Chain Coupling

A shaft chain coupling is a type of coupling that is used to connect 2 shafts that are not perfectly aligned. The coupling consists of a chain that is connected to 2 sprockets, 1 on each shaft. The chain allows the shafts to move slightly relative to each other, which helps to compensate for misalignment.

Shaft chain couplings are used in a wide variety of applications, including:

  • Conveyors: Shaft chain couplings are used in conveyors to transmit power from the motor to the conveyor belt.
  • Pumps: Shaft chain couplings are used in pumps to transmit power from the motor to the pump shaft.
  • Fans: Shaft chain couplings are used in fans to transmit power from the motor to the fan shaft.
  • Generators: Shaft chain couplings are used in generators to transmit power from the turbine to the generator rotor.
  • Wind turbines: Shaft chain couplings are used in wind turbines to transmit power from the turbine to the generator rotor.

Shaft chain couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, including:

  • Can compensate for misalignment: Shaft chain couplings can compensate for misalignment up to 2 degrees. This makes them ideal for applications where the shafts are not perfectly aligned, such as when the equipment is installed in a new location or when the equipment is subject to vibration.
  • Easy to install: Shaft chain couplings are easy to install and maintain. They can be installed without special tools or training.
  • Available in a variety of sizes and styles: Shaft chain couplings are available in a variety of sizes and styles to meet the needs of different applications. This makes it easy to find a coupling that is the right size and style for your application.
  • Highly efficient: Shaft chain couplings are highly efficient, meaning that they transmit a large percentage of the power from the driving shaft to the driven shaft. This can save money on energy costs.
  • Durable: Shaft chain couplings are durable and can withstand a wide range of operating conditions.

Here are some of the disadvantages of using shaft chain couplings:

  • Cost: Shaft chain couplings can be more expensive than other types of couplings.
  • Maintenance: Shaft chain couplings require periodic maintenance, such as checking the coupling for wear and tear and lubricating the chain as needed.

Overall, shaft chain couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, but they also have some disadvantages. The best type of coupling for a particular application will depend on the specific requirements of that application.

elastomeric coupling

Elastomeric Couplings and Handling Torque Spikes and Sudden Load Changes

Elastomeric couplings are designed to handle torque spikes and sudden changes in load, thanks to the inherent flexibility and damping properties of the elastomeric material. Here’s how they manage such scenarios:

1. Damping Effect:

When a sudden increase in torque or load occurs in the machinery, the elastomeric coupling’s flexible element acts as a buffer, absorbing and dissipating the excess energy. This damping effect helps prevent the transmission of shock loads to the connected equipment, reducing the risk of damage.

2. Torsional Compliance:

Elastomeric couplings have a certain level of torsional compliance, which allows them to tolerate brief torque spikes without transmitting excessive forces to the connected shafts. This torsional compliance is essential in applications where sudden load changes are common.

3. Misalignment Compensation:

Elastomeric couplings can accommodate some degree of misalignment between the shafts. When torque spikes or sudden loads lead to minor misalignments, the coupling can flex and compensate for these changes, reducing the stress on the machinery.

4. Vibration Absorption:

If torque spikes or sudden loads result in torsional vibrations, the elastomeric material can absorb and dampen these vibrations, preventing them from propagating through the system and causing additional damage.

5. Material Selection:

The selection of appropriate elastomeric materials and coupling design factors in the anticipated torque and load requirements. Couplings can be designed to handle specific torque spikes and loads based on the elastomer’s hardness and properties.

Despite their ability to handle torque spikes and sudden load changes, it is essential to consider the specific application requirements when choosing an elastomeric coupling. Factors such as the magnitude and frequency of torque spikes, load characteristics, and operating conditions must be taken into account to ensure the coupling’s compatibility and reliability.

Properly selected and maintained elastomeric couplings provide effective torque transmission and help protect connected equipment from the impact of sudden changes in load, contributing to the overall efficiency and longevity of the machinery.

elastomeric coupling

Safety Considerations When Using Elastomeric Couplings in High-Speed or Heavy-Load Applications

When using elastomeric couplings in high-speed or heavy-load applications, there are several important safety considerations to ensure reliable and safe operation. These considerations help prevent potential hazards and mitigate risks associated with the coupling’s performance under demanding conditions:

1. Coupling Selection:

Choose an elastomeric coupling specifically designed and rated for high-speed and heavy-load applications. Ensure the coupling’s torque and speed ratings exceed the maximum requirements of your application to prevent overloading.

2. Dynamic Balancing:

For high-speed applications, ensure that the coupling and the connected equipment are dynamically balanced. Imbalances can lead to significant vibrations, which may cause premature wear, fatigue, and ultimately failure of the coupling or connected machinery.

3. Misalignment Limits:

Monitor and control misalignment between shafts within the coupling’s allowable limits. Excessive misalignment can cause additional stresses on the elastomeric material and reduce coupling life.

4. Temperature Monitoring:

Monitor the operating temperature of the coupling, especially during high-speed or high-load operations. Elevated temperatures can accelerate elastomer degradation and affect the coupling’s flexibility and damping characteristics.

5. Regular Inspection:

Perform regular visual inspections of the coupling to check for signs of wear, damage, or misalignment. Promptly address any issues to prevent potential safety risks.

6. Avoid Shock Loads:

Avoid subjecting the coupling to sudden shock loads, especially in high-load applications. Sudden shock loads can lead to excessive stress on the elastomer, causing it to fail prematurely.

7. Load Capacity:

Ensure that the coupling’s load capacity matches or exceeds the maximum loads expected in the application. Operating the coupling near its maximum capacity for prolonged periods may decrease its lifespan.

8. Installation Quality:

Ensure that the elastomeric coupling is installed correctly following the manufacturer’s guidelines. Proper installation prevents misalignment and ensures the coupling can handle the anticipated loads and speeds safely.

By carefully considering these safety measures and adhering to manufacturer recommendations, you can use elastomeric couplings effectively and safely in high-speed or heavy-load applications. Regular maintenance, monitoring, and adherence to safety guidelines will help prevent accidents, minimize downtime, and ensure the longevity and reliability of your coupling system.

elastomeric coupling

Limitations and Drawbacks of Using Elastomeric Couplings in Specific Scenarios

While elastomeric couplings offer several advantages, they may not be the ideal choice for every scenario. There are some limitations and drawbacks to consider, particularly in specific industrial applications. Here are some key points to be aware of:

1. Torque Capacity:

Elastomeric couplings may have limitations in handling high torque levels. In heavy-duty applications with significant torque requirements, a different type of coupling, such as a gear coupling or grid coupling, might be more suitable.

2. Temperature Range:

Elastomeric materials have temperature limitations. In environments with extreme temperatures, such as high-temperature industrial processes or cryogenic applications, elastomeric couplings may degrade or lose their flexibility, affecting their performance and lifespan.

3. Chemical Compatibility:

Some chemicals or aggressive substances may degrade the elastomeric material used in the coupling. In such cases, alternative coupling materials, like stainless steel or special coatings, should be considered.

4. High-Speed Applications:

In applications with high rotational speeds, elastomeric couplings might experience dynamic issues like resonance or flutter, which can lead to premature wear or failure. High-speed applications often require specialized couplings, such as disc couplings or diaphragm couplings.

5. Stiffness and Torsional Rigidity:

For applications requiring precise motion control or minimal angular deflection, elastomeric couplings might not provide the necessary stiffness or torsional rigidity. In such cases, rigid couplings or precision couplings are better suited.

6. Axial Load Handling:

Elastomeric couplings are primarily designed for torque transmission and misalignment compensation. They may not be suitable for handling significant axial loads between connected shafts.

7. Maintenance in Harsh Environments:

In environments with abrasive particles, high humidity, or other harsh conditions, elastomeric couplings might require more frequent maintenance to prevent premature wear.

8. Space Limitations:

Due to their flexible design, elastomeric couplings might require more space compared to some other coupling types. In compact or space-constrained applications, alternative couplings with more compact designs might be preferred.

Despite these limitations, elastomeric couplings remain highly versatile and effective in numerous industrial applications. However, it’s crucial to carefully consider the specific requirements and operating conditions of each application to determine whether an elastomeric coupling is the best choice or if an alternative coupling type might be more suitable.

China factory Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling  China factory Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling
editor by CX 2023-10-07

China supplier Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings gear coupling

Product Description


Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!

How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;

2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;

3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;

4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.

5. We can arrange a technical communication meeting with you and our engineers together anytime if required.

Place of origin: Jangsu,China
Type: Powder metallurgy sintering
Spare parts type: Powder metallurgy parts
Machinery Test report: Provided
Material: Iron,stainless,steel,copper
Key selling points: Quality assurance
Mould type: Tungsten steel
Material standard: MPIF 35,DIN 3571,JIS Z 2550
Application: Small home appliances,Lockset,Electric tool, automobile,
Brand Name: OEM SERVICE
Plating: Customized
After-sales Service: Online support
Processing: Powder Metallurgr,CNC Machining
Powder Metallurgr: High frequency quenching, oil immersion
Quality Control: 100% inspection

The Advantage of Powder Metallurgy Process

1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .

2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.

3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .

4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .

5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten. 

FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.

Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good. 

Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.

Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.

Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.

Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
    2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
 

flange coupling

How Does a Gear Coupling Handle Angular, Parallel, and Axial Misalignment?

Gear couplings are designed to handle various types of misalignment, including angular, parallel, and axial misalignment. Here’s how they handle each type:

  • Angular Misalignment: Angular misalignment occurs when the two connected shafts are not collinear and form an angle with each other. Gear couplings can accommodate angular misalignment due to the flexibility of their gear teeth. The gear teeth allow a slight angular movement between the shafts without causing significant stress on the coupling.
  • Parallel Misalignment: Parallel misalignment occurs when the two connected shafts are offset along their axis but remain parallel to each other. Gear couplings can handle parallel misalignment to some extent due to the slight axial movement allowed by the gear teeth. However, for larger parallel misalignments, special gear couplings with spacer elements or other features may be required.
  • Axial Misalignment: Axial misalignment occurs when the two connected shafts are not in the same axial plane and have an offset along their length. Gear couplings can handle a certain degree of axial misalignment because the gear teeth can accommodate small axial movements without causing damage to the coupling or connected equipment.

The ability of gear couplings to handle misalignment is one of their key advantages over other types of couplings. The gear teeth act as flexible elements that can compensate for minor misalignments, reducing the stress and wear on the coupling and the connected equipment. However, it is essential to ensure that the misalignment remains within the allowable limits specified by the coupling manufacturer to maintain optimal performance and reliability.

China supplier Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  gear couplingChina supplier Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  gear coupling
editor by CX 2023-10-06

China factory Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description


Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!

How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;

2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;

3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;

4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.

5. We can arrange a technical communication meeting with you and our engineers together anytime if required.

Place of origin: Jangsu,China
Type: Powder metallurgy sintering
Spare parts type: Powder metallurgy parts
Machinery Test report: Provided
Material: Iron,stainless,steel,copper
Key selling points: Quality assurance
Mould type: Tungsten steel
Material standard: MPIF 35,DIN 3571,JIS Z 2550
Application: Small home appliances,Lockset,Electric tool, automobile,
Brand Name: OEM SERVICE
Plating: Customized
After-sales Service: Online support
Processing: Powder Metallurgr,CNC Machining
Powder Metallurgr: High frequency quenching, oil immersion
Quality Control: 100% inspection

The Advantage of Powder Metallurgy Process

1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .

2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.

3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .

4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .

5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten. 

FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.

Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good. 

Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.

Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.

Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.

Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
    2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
 

fluid coupling

Factors Influencing the Thermal Performance of a Fluid Coupling

The thermal performance of a fluid coupling, specifically its ability to dissipate heat and maintain operating temperatures within acceptable limits, is influenced by several factors:

  • Power Rating: The power rating of the fluid coupling, which indicates its capacity to handle a specific amount of power, affects its thermal performance. Higher power ratings generally result in higher heat generation, so it’s essential to choose a fluid coupling with an adequate power rating for the application.
  • Operating Speed: The operating speed of the fluid coupling is a critical factor. Higher speeds can lead to increased heat generation due to friction and viscous losses. It’s essential to consider the operating speed to ensure the fluid coupling can handle the heat produced at the given speed.
  • Ambient Temperature: The ambient temperature of the environment in which the fluid coupling operates also plays a role in its thermal performance. Higher ambient temperatures can impact the cooling efficiency and may lead to increased operating temperatures.
  • Load Variation: Applications with varying loads can experience changes in heat generation. Fluid couplings used in such systems must be capable of handling the thermal effects of load fluctuations without exceeding temperature limits.
  • Cooling Method: The cooling method employed in the fluid coupling design significantly affects its thermal performance. Some fluid couplings use natural convection for cooling, while others incorporate forced cooling methods such as internal or external cooling circuits. The cooling system’s efficiency directly impacts the ability to dissipate heat effectively.
  • Fluid Properties: The properties of the fluid inside the coupling, such as viscosity and heat capacity, influence thermal performance. The choice of fluid can affect the amount of heat generated and the efficiency of heat dissipation.
  • Operating Time: The duration of operation also affects the thermal behavior of the fluid coupling. Continuous operation or extended duty cycles may lead to higher operating temperatures, requiring careful consideration during selection.
  • Proper Maintenance: Regular maintenance, including lubricant inspection and replacement, is crucial for optimal thermal performance. Contaminated or degraded fluid can impact the heat transfer characteristics of the coupling.

It’s essential to consider these factors when selecting a fluid coupling to ensure that it can effectively manage heat generation and maintain safe operating temperatures in the specific application.

fluid coupling

Fluid Couplings in Hydraulic Drive Systems

Yes, fluid couplings can be used in hydraulic drive systems to transmit power and control the speed of driven components. In hydraulic drive systems, fluid couplings act as a torque converter, providing a smooth and gradual transfer of power between the input and output shafts.

The basic principle of a fluid coupling remains the same whether it is used in a mechanical drive system or a hydraulic drive system. The fluid coupling consists of an input impeller connected to the prime mover (such as an electric motor or an engine) and an output runner connected to the driven component.

When the prime mover is activated, it drives the input impeller, creating a flow of hydraulic fluid within the coupling. This fluid flow creates a hydrodynamic torque that is transferred to the output runner, driving the connected component. The fluid coupling allows for a controlled slip between the input and output, allowing the driven component to start smoothly and gradually reach its desired speed.

In hydraulic drive systems, fluid couplings offer several advantages:

  • Smooth Torque Transmission: Fluid couplings provide smooth torque transmission, reducing shocks and vibrations in the system.
  • Overload Protection: Fluid couplings can protect the drive system from overloads by allowing some slip in the event of sudden changes in load or jamming of the driven component.
  • Speed Control: By controlling the flow of hydraulic fluid, the speed of the driven component can be precisely regulated.
  • Energy Efficiency: Fluid couplings can help improve energy efficiency by reducing mechanical losses and optimizing power transmission.

Hydraulic drive systems with fluid couplings are commonly used in various industrial applications, including conveyor systems, mining equipment, marine propulsion, and more. They offer reliable and efficient power transmission while protecting the machinery from excessive loads and shocks.

It’s essential to consider the specific requirements of the hydraulic drive system and the characteristics of the fluid coupling to ensure optimal performance and efficiency in the application.

fluid coupling

Selecting the Right Size of Fluid Coupling for Your Application

To ensure optimal performance and efficiency, it’s essential to choose the right size of fluid coupling for a specific application. Here are the key steps in the selection process:

  1. Identify the Application Requirements: Understand the torque and power requirements of your application. Determine the maximum torque and power that the fluid coupling needs to transmit to meet the operational demands of the machinery or equipment.
  2. Check the Speed Range: Consider the speed range of your application. Ensure that the fluid coupling can operate effectively within the desired speed range, providing adequate torque transfer across the entire speed spectrum.
  3. Consider the Fluid Coupling Type: Choose the appropriate type of fluid coupling based on the specific needs of your application. Hydrodynamic fluid couplings are suitable for applications requiring smooth and gradual torque transmission, while constant-fill fluid couplings are more suitable for applications where some slip is acceptable.
  4. Calculate the Service Factor: Determine the service factor, which accounts for any additional loads or impacts the fluid coupling may experience during operation. Multiply the maximum torque requirement by the service factor to obtain the design torque.
  5. Refer to Manufacturer Data: Consult the manufacturer’s data sheets and specifications for various fluid coupling models. Compare the design torque with the torque capacity of different fluid coupling sizes to find the most suitable match for your application.
  6. Consider Safety Margins: It’s advisable to apply safety margins to ensure reliable operation. Select a fluid coupling with a torque capacity higher than the calculated design torque to account for potential variations in load or operating conditions.
  7. Verify Space Constraints: Ensure that the selected fluid coupling fits within the available space in your machinery or equipment, considering any installation restrictions or dimensional limitations.

By following these steps and carefully evaluating the requirements of your specific application, you can select the right size of fluid coupling that will deliver optimal performance, efficiency, and reliability.

China factory Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China factory Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2023-09-27

China Professional Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

Product Description

Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

elastomeric coupling

Design Considerations for Enhancing Elastomeric Coupling Durability

Elastomeric couplings can be designed to enhance their durability and performance in various mechanical power transmission applications. Here are some key design considerations:

1. Material Selection:

Choosing the appropriate elastomeric material based on the specific application requirements is critical for ensuring durability. Factors such as temperature range, chemical exposure, load capacity, and resistance to wear and tear should guide the material selection process.

2. Torque and Load Ratings:

The coupling’s design should consider the expected torque and load requirements of the application. Ensuring that the coupling’s torque and load ratings are well-matched to the operating conditions helps prevent premature failure due to overloading.

3. Misalignment Compensation:

Elastomeric couplings are known for their ability to accommodate misalignment between shafts. Properly designing the coupling to handle the anticipated misalignment angles and offset distances will prevent excessive stress on the elastomer and increase its longevity.

4. Damping and Vibration Control:

Integrating features to enhance the coupling’s damping capabilities can help reduce vibrations and dampen shocks and impacts. This reduces the overall stress on the coupling and connected equipment, contributing to improved durability.

5. Torsional Flexibility:

Providing adequate torsional flexibility in the coupling design allows it to absorb sudden torque spikes and fluctuations, preventing potential damage to the machinery and enhancing durability.

6. Corrosion Resistance:

In environments where corrosion or chemical exposure is a concern, incorporating corrosion-resistant materials or protective coatings in the coupling design can extend its service life.

7. Lubrication and Maintenance:

Some elastomeric couplings may require periodic lubrication to minimize friction and wear. Designing the coupling to facilitate easy maintenance can ensure it remains in optimal condition throughout its operational life.

8. Finite Element Analysis (FEA):

Using FEA during the design phase allows engineers to simulate real-world operating conditions and identify potential stress concentrations. This enables the optimization of the coupling’s shape and material distribution for enhanced durability.

By carefully considering these design aspects, engineers can create robust and durable elastomeric couplings that provide reliable performance and contribute to the overall efficiency and longevity of the mechanical systems they serve.

elastomeric coupling

Impact of Elastomeric Material Elasticity on Coupling Performance

The elasticity of the elastomeric material is a critical factor that significantly influences the performance of elastomeric couplings. The elasticity, or flexibility, of the elastomer allows the coupling to accommodate misalignment and torsional vibrations, providing several important benefits:

1. Misalignment Compensation:

Elastomeric couplings can handle various types of misalignment, including angular, parallel, and axial misalignments. The elasticity of the elastomer allows it to flex and absorb the misalignment between the connected shafts, reducing stress on the coupling and connected machinery.

2. Vibration Damping:

The elastomeric material acts as a natural vibration isolator, dampening torsional vibrations and shocks that occur during operation. This damping effect helps protect the connected equipment from excessive vibrations and reduces the risk of fatigue failure.

3. Shock Load Abselastomeric coupling

How to Select the Right Elastomeric Coupling for a Particular Application

Selecting the appropriate elastomeric coupling for a specific application involves considering several key factors to ensure optimal performance, efficiency, and reliability. Here’s a step-by-step guide to help you make the right choice:

1. Load Requirements:

Start by determining the torque and power requirements of your application. Consider both the steady-state and peak loads to select a coupling that can handle the maximum expected load without exceeding its torque capacity.

2. Misalignment Tolerance:

Evaluate the expected misalignment between the connected shafts. Elastomeric couplings are excellent at compensating for small misalignments, but for larger misalignments, special designs or alternative coupling types may be more suitable.

3. Speed and RPM:

Understand the rotational speed (RPM) at which the coupling will operate. High-speed applications may require more rigid couplings to avoid dynamic issues, while low-speed applications can benefit from the damping effect of elastomeric couplings.

4. Environmental Conditions:

Consider the environmental factors that the coupling will be exposed to, such as temperature, humidity, chemical exposure, and presence of abrasive particles. Choose a coupling material that can withstand these conditions without compromising performance.

5. Space Constraints:

If you have limited space in your application, look for compact elastomeric couplings that can fit within the available area without sacrificing performance.

6. Electrical Isolation:

In applications where electrical isolation is required, select an elastomeric coupling made from an electrically insulating material.

7. Maintenance:

Consider the maintenance requirements of the coupling. Elastomeric couplings are generally low-maintenance, but if your application involves harsh conditions, you might need to inspect and replace the coupling more frequently.

8. Manufacturer Recommendations:

Always consult with the coupling manufacturer for their recommendations and technical specifications. Manufacturers can provide valuable insights and guidance based on your specific application requirements.

9. Cost Consideration:

Compare the cost of different elastomeric couplings while keeping in mind their performance and longevity. Striking the right balance between cost and quality is essential.

By carefully evaluating these factors and matching them to the characteristics of available elastomeric couplings, you can select the most suitable coupling for your particular application. Proper coupling selection ensures reliable power transmission, longer equipment lifespan, and reduced downtime in industrial systems.

China Professional Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling  China Professional Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling
editor by CX 2023-09-21

China high quality Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

Product Description

Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

elastomeric coupling

Differences Between Elastomeric Couplings Made from Different Materials

Elastomeric couplings can be manufactured using various materials, each offering unique properties that influence the coupling’s performance in different applications. Here are the key differences between couplings made from rubber, polyurethane, and silicone:

1. Rubber Elastomers:

Rubber elastomers are commonly used in elastomeric couplings due to their excellent resilience, flexibility, and damping properties. They can handle a wide range of temperatures and are resistant to abrasion and wear. Rubber couplings are ideal for general-purpose applications where moderate torque and misalignment compensation are required.

2. Polyurethane Elastomers:

Polyurethane elastomers provide higher strength and load-bearing capabilities compared to rubber. They have better resistance to oils, chemicals, and harsh environments. Polyurethane couplings are suitable for applications involving higher torque, shock loads, and exposure to aggressive substances.

3. Silicone Elastomers:

Silicone elastomers offer superior thermal stability and can withstand extreme temperature variations. They exhibit excellent electrical insulation properties and are resistant to aging and weathering. Silicone couplings are often used in applications that require high-temperature resistance and electrical isolation.

4. Damping and Resilience:

Rubber generally provides better damping properties, making it effective in reducing vibrations and noise. Polyurethane offers higher resilience, which can be advantageous in applications with frequent torque spikes and shock loads. Silicone combines good damping with high-temperature resistance.

5. Environmental Compatibility:

Polyurethane and silicone couplings tend to have better resistance to chemicals, oils, and extreme temperatures, making them suitable for demanding environments. Rubber couplings may have limitations in certain aggressive chemical environments.

6. Cost and Performance Balance:

The choice of material also affects the cost of the coupling. Rubber is generally more cost-effective, while polyurethane and silicone may be more expensive but offer specific performance advantages in certain applications.

When selecting an elastomeric coupling, it is crucial to consider the specific requirements of the application, such as torque, speed, misalignment, temperature range, and chemical exposure. The material choice should align with the demands of the operating conditions to ensure optimal coupling performance and longevity.

elastomeric coupling

Standard Specifications and Industry Norms for Elastomeric Couplings

Yes, there are standard specifications and industry norms that govern the design, manufacturing, and performance of elastomeric couplings. These standards ensure that elastomeric couplings meet specific criteria for quality, reliability, and safety. Some of the widely recognized standards and norms for elastomeric couplings include:

1. American National Standards Institute (ANSI):

ANSI provides standards and guidelines for elastomeric couplings used in various industrial applications. ANSI standards cover design considerations, dimensions, materials, torque ratings, and performance testing for elastomeric couplings.

2. International Organization for Standardization (ISO):

ISO develops international standards for elastomeric couplings, ensuring consistency and interoperability across different regions and industries. ISO standards cover coupling performance, dimensions, and testing methods.

3. American Society of Mechanical Engineers (ASME):

ASME standards include guidelines for elastomeric couplings, providing information on design, installation, maintenance, and inspection practices to ensure safe and reliable operation.

4. American Gear Manufacturers Association (AGMA):

AGMA publishes standards related to elastomeric couplings used in power transmission systems. These standards cover coupling design, selection, application, and maintenance guidelines.

5. European Committee for Standardization (CEN):

CEN develops European standards for elastomeric couplings to promote uniformity and compliance across European countries.

Manufacturers often use these standards as a reference when designing and testing elastomeric couplings. Compliance with these standards helps ensure that the couplings meet minimum quality and performance requirements. Additionally, many industries have specific regulations and norms related to safety, which elastomeric couplings must adhere to when used in their applications.

When selecting an elastomeric coupling, it is essential to verify if it complies with the relevant standards and industry norms to guarantee its suitability and safety for your specific application. Manufacturers typically provide documentation stating the compliance of their couplings with the applicable standards.

elastomeric coupling

How to Select the Right Elastomeric Coupling for a Particular Application

Selecting the appropriate elastomeric coupling for a specific application involves considering several key factors to ensure optimal performance, efficiency, and reliability. Here’s a step-by-step guide to help you make the right choice:

1. Load Requirements:

Start by determining the torque and power requirements of your application. Consider both the steady-state and peak loads to select a coupling that can handle the maximum expected load without exceeding its torque capacity.

2. Misalignment Tolerance:

Evaluate the expected misalignment between the connected shafts. Elastomeric couplings are excellent at compensating for small misalignments, but for larger misalignments, special designs or alternative coupling types may be more suitable.

3. Speed and RPM:

Understand the rotational speed (RPM) at which the coupling will operate. High-speed applications may require more rigid couplings to avoid dynamic issues, while low-speed applications can benefit from the damping effect of elastomeric couplings.

4. Environmental Conditions:

Consider the environmental factors that the coupling will be exposed to, such as temperature, humidity, chemical exposure, and presence of abrasive particles. Choose a coupling material that can withstand these conditions without compromising performance.

5. Space Constraints:

If you have limited space in your application, look for compact elastomeric couplings that can fit within the available area without sacrificing performance.

6. Electrical Isolation:

In applications where electrical isolation is required, select an elastomeric coupling made from an electrically insulating material.

7. Maintenance:

Consider the maintenance requirements of the coupling. Elastomeric couplings are generally low-maintenance, but if your application involves harsh conditions, you might need to inspect and replace the coupling more frequently.

8. Manufacturer Recommendations:

Always consult with the coupling manufacturer for their recommendations and technical specifications. Manufacturers can provide valuable insights and guidance based on your specific application requirements.

9. Cost Consideration:

Compare the cost of different elastomeric couplings while keeping in mind their performance and longevity. Striking the right balance between cost and quality is essential.

By carefully evaluating these factors and matching them to the characteristics of available elastomeric couplings, you can select the most suitable coupling for your particular application. Proper coupling selection ensures reliable power transmission, longer equipment lifespan, and reduced downtime in industrial systems.

China high quality Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling  China high quality Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling
editor by CX 2023-09-18

China Best Sales Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description

 Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc CZPT Flex Rigid Drive Shaft NM yox Fluid Jaw Flexible Chain Gear Couplings

Manufacturer of Couplings, Fluid Coupling, JAW Coupling, can interchange and replacement of lovejoy coupling and so on.

A coupling can interchange and replacement of lovejoy coupling is a device used to connect 2 shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join 2 pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

 

Coupling is a jaw type coupling that works for a variety of light duty to heavy duty motors used in electric power transmission.

This is 1 of our safest types of products. The reason being that these couplings work even when the elastomer fails and there is no metal to metal contact.

They perform in well-standing oil, grease, moisture, sand, and dirt and nearly 850,000 bore combinations that can be customised as per the customer’s needs.

They are used in light-weight, medium, or heavy electrical motors and devices for power transmission through internal combustion.

Production workshop:
Company information:

disc coupling

Common Applications of Disc Couplings

Disc couplings find extensive use across various industries and applications where reliable torque transmission, misalignment compensation, and torsional stiffness are essential. Some notable examples include:

  • Industrial Machinery: Disc couplings are employed in industrial equipment such as pumps, compressors, generators, and conveyors. They ensure precise torque transfer and alignment in heavy-duty machinery.
  • Power Generation: Gas turbines, steam turbines, and power generators often utilize disc couplings to transmit torque between components while withstanding high rotational speeds.
  • Aerospace: In aircraft and spacecraft, disc couplings help connect critical systems like engines and auxiliary power units, ensuring dependable torque transmission in demanding environments.
  • Marine: Ships and offshore platforms use disc couplings to connect propulsion systems, generators, and other machinery, even in conditions with variable loads and misalignments.
  • Oil and Gas: Disc couplings play a crucial role in drilling rigs, pumps, and other equipment where reliable torque transmission and misalignment compensation are vital.
  • Automotive: Some automotive applications use disc couplings to connect components within drivetrains and transmissions, especially in vehicles with high-performance requirements.

These examples highlight the versatility and importance of disc couplings in various industries where precise torque transmission, misalignment handling, and torsional stiffness are critical for optimal performance.

disc coupling

Suitability of Disc Couplings for High-Speed Rotation and Critical Alignment

Disc couplings are well-suited for applications involving high-speed rotation and critical alignment due to their unique design and performance characteristics:

  • High-Speed Rotation: Disc couplings can handle high rotational speeds while maintaining their balance and integrity. Their lightweight and compact design minimize the effects of centrifugal forces, making them suitable for high-speed applications.
  • Critical Alignment: Disc couplings offer excellent flexibility and angular misalignment compensation. They can accommodate axial, radial, and angular misalignments, making them suitable for applications where maintaining precise alignment is crucial.
  • Torsional Stiffness: Disc couplings can provide a balance between flexibility and torsional stiffness, allowing them to transmit torque accurately even in critical alignment scenarios.
  • High Torque Capacity: Many disc couplings are designed to handle high torque loads, making them suitable for applications with demanding torque requirements.
  • Resonance Damping: The flexible nature of disc couplings can help dampen vibrations and reduce the risk of resonance, which is important in high-speed applications.

When selecting a disc coupling for high-speed rotation and critical alignment, it’s essential to consider factors such as torque requirements, speed range, misalignment compensation, space limitations, and dynamic behavior to ensure optimal performance and reliability in the specific application.

disc coupling

Challenges and Solutions for Misaligned Disc Couplings

Misalignment in disc couplings can lead to several challenges, but these issues can be effectively addressed using appropriate measures:

  • Reduced Efficiency: Misalignment can cause increased friction and wear, leading to energy losses and reduced coupling efficiency. Regular maintenance and proper alignment can help mitigate this issue.
  • Vibration and Noise: Misalignment often results in vibrations and noise in the machinery. This can impact the overall performance of the system and cause discomfort to operators. Ensuring precise alignment and using vibration-damping solutions can minimize these effects.
  • Premature Wear: Disc couplings experiencing misalignment may wear out prematurely due to uneven loading and stress concentrations. Optimal alignment and using coupling models designed to handle misalignment can extend the coupling’s lifespan.
  • Imbalanced Loads: Misalignment can lead to imbalanced loads on the coupling discs, causing uneven stress distribution. This can lead to fatigue and failure. Using spacer elements between the discs and proper alignment can distribute the loads more evenly.
  • Reduced Accuracy: In applications requiring precision positioning, misaligned disc couplings can result in inaccurate measurements or positioning. Implementing accurate alignment practices and selecting couplings designed for precise applications can mitigate this challenge.
  • Temperature Rise: Misalignment-induced friction generates heat, leading to temperature rise in the coupling and adjacent components. This can potentially affect the material properties and lead to premature wear. Proper alignment and selecting appropriate lubrication can manage temperature rise.

Addressing misalignment challenges involves a combination of careful installation, routine maintenance, alignment checks, and using coupling designs that offer flexibility and resilience to misalignment. Regular monitoring and addressing misalignment issues promptly can help ensure the longevity and optimal performance of disc couplings.

China Best Sales Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China Best Sales Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2023-09-07